import argparse
import itertools
import os
from typing import Sequence, TypeVar, Union
from libfb.py.log import set_simple_logging # type: ignore[import]
from torchgen import gen
from torchgen.context import native_function_manager
from torchgen.model import DispatchKey, NativeFunctionsGroup, NativeFunctionsViewGroup
from torchgen.static_runtime import config, generator
# Given a list of `grouped_native_functions` sorted by their op names, return a list of
# lists each of which groups ops that share the base name. For example, `mean` and
# `mean.dim` are grouped together by this function.
NativeGroupT = TypeVar(
"NativeGroupT",
bound=Union[NativeFunctionsGroup, NativeFunctionsViewGroup],
)
def group_functions_by_op_name(
grouped_native_functions: Sequence[NativeGroupT],
) -> Sequence[Sequence[NativeGroupT]]:
if not grouped_native_functions:
return []
groups = []
def is_supported(g: Union[NativeFunctionsGroup, NativeFunctionsViewGroup]) -> bool:
with native_function_manager(g):
return generator.is_supported(g)
eligible_ops = (g for g in grouped_native_functions if is_supported(g))
groups = [
list(group)
for k, group in (
itertools.groupby(
eligible_ops,
key=lambda g: config.func_name_base_str(g),
)
)
]
return groups
def clang_format(cpp_file_path: str) -> None:
import subprocess
subprocess.run(["clang-format", "-i", cpp_file_path])
def write_cpp(cpp_ops: Sequence[str], file_path: str) -> None:
code = "\n".join(cpp_ops)
generated = f"""// @lint-ignore-every CLANGTIDY HOWTOEVEN
// AUTO-GENERATED FROM: torchgen/static_runtime/gen_static_runtime_ops.py
#include <torch/csrc/jit/runtime/static/ops.h>
#include <ATen/CPUFunctions.h>
#include <ATen/InferSize.h>
#include <ATen/NativeFunctions.h>
#include <ATen/Parallel.h>
#include <ATen/ScalarOps.h>
#include <ATen/TensorUtils.h>
#include <ATen/cpu/vec/functional.h>
#include <ATen/cpu/vec/vec.h>
#include <ATen/native/EmbeddingBag.h>
#include <ATen/native/Fill.h>
#include <ATen/native/IndexingUtils.h>
#include <ATen/native/NonSymbolicBC.h>
#include <ATen/native/Resize.h>
#include <ATen/native/SharedReduceOps.h>
#include <ATen/native/TensorAdvancedIndexing.h>
#include <ATen/native/cpu/SerialStackImpl.h>
#include <ATen/native/layer_norm.h>
#include <ATen/native/quantized/cpu/fbgemm_utils.h>
#include <ATen/native/quantized/cpu/qembeddingbag.h>
#include <ATen/native/quantized/cpu/qembeddingbag_prepack.h>
#include <ATen/quantized/QTensorImpl.h>
#include <ATen/quantized/Quantizer.h>
#include <c10/core/ScalarType.h>
#include <c10/core/WrapDimMinimal.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/runtime/static/impl.h>
#include <torch/csrc/jit/runtime/static/te_wrapper.h>
#include <torch/csrc/jit/runtime/vararg_functions.h>
#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/llvm_codegen.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>
namespace torch {{
namespace jit {{
{code}
}} // namespace jit
}} // namespace torch
"""
with open(file_path, "w") as f:
f.write(generated)
clang_format(file_path)
def write_test_cpp(cpp_ops: Sequence[str], file_path: str) -> None:
code = "\n".join(cpp_ops)
generated = f"""// @lint-ignore-every CLANGTIDY HOWTOEVEN
// AUTO-GENERATED FROM: torchgen/static_runtime/gen_static_runtime_ops.py
#include <gtest/gtest.h>
#include <torch/csrc/jit/runtime/static/impl.h>
#include <torch/torch.h>
#include "test_utils.h"
using namespace caffe2;
using namespace torch;
using namespace torch::jit;
using namespace torch::jit::test;
using c10::IValue;
{code}
"""
with open(file_path, "w") as f:
f.write(generated)
clang_format(file_path)
def main() -> None:
parser = argparse.ArgumentParser(description="Generate ATen source files")
parser.add_argument(
"-s",
"--source-path",
help="path to source directory for ATen",
default="caffe2/aten/src/ATen",
)
parser.add_argument(
"-p",
"--generated-ops-cpp-path",
help="path to directory to generate op dispatcher .cpp file",
default="caffe2/torch/csrc/jit/runtime/static/generated_ops.cpp",
)
parser.add_argument(
"-t",
"--generated-ops-test-cpp-path",
help="path to directory to generate op dispatcher .cpp file",
default="caffe2/benchmarks/static_runtime/test_generated_ops.cc",
)
options = parser.parse_args()
native_yaml_path = os.path.join(options.source_path, "native/native_functions.yaml")
tags_yaml_path = os.path.join(options.source_path, "native/tags.yaml")
parsed_yaml = gen.parse_native_yaml(native_yaml_path, tags_yaml_path)
native_functions, backend_indices = (
parsed_yaml.native_functions,
parsed_yaml.backend_indices,
)
op_generator = generator.GenOpDispatcher()
test_case_generator = generator.GenOpTestCase()
native_functions_groups = [
g
for g in gen.get_grouped_native_functions(native_functions)
if isinstance(g, NativeFunctionsGroup)
]
supported_functions_groups = group_functions_by_op_name(native_functions_groups)
out_variant_op_result = [
op_generator.out_variant(groups, backend_indices[DispatchKey.CPU])
for groups in supported_functions_groups
]
out_variant_test_result = [
test_case_generator.out_variant(groups) for groups in supported_functions_groups
]
native_functions_view_groups = [
g
for g in gen.get_grouped_by_view_native_functions(native_functions)
if isinstance(g, NativeFunctionsViewGroup)
]
supported_functions_view_groups = group_functions_by_op_name(
native_functions_view_groups
)
view_op_result = [
op_generator.view(groups, backend_indices[DispatchKey.CPU])
for groups in supported_functions_view_groups
]
view_test_result = [
test_case_generator.view(groups) for groups in supported_functions_view_groups
]
op_result = out_variant_op_result + ["\n\n"] + view_op_result
test_result = out_variant_test_result + ["\n\n"] + view_test_result
write_cpp(op_result, options.generated_ops_cpp_path)
write_test_cpp(test_result, options.generated_ops_test_cpp_path)
print(
"\ntotal grouped native ops: %d"
% len(gen.get_grouped_native_functions(native_functions))
)
print("grouped native ops with out variant: %d" % len(native_functions_groups))
supported_functions_num = sum(
[len(groups) for groups in supported_functions_groups]
)
print("generated functions groups with out variant: %d" % supported_functions_num)
print("\nview grouped native ops: %d" % len(native_functions_view_groups))
supported_view_functions_num = sum(
[len(groups) for groups in supported_functions_view_groups]
)
print("generated functions view groups: %d" % supported_view_functions_num)
print(
"\noverall generated : %d"
% (supported_functions_num + supported_view_functions_num)
)
if __name__ == "__main__":
set_simple_logging(escape_newlines=False)
main()