Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

edgify / torch   python

Repository URL to install this package:

Version: 2.0.1+cpu 

/ testing / _internal / common_dist_composable.py

# Owner(s): ["oncall: distributed"]

from typing import Tuple

import torch
import torch.nn as nn


class UnitModule(nn.Module):
    def __init__(self, device: torch.device):
        super().__init__()
        self.l1 = nn.Linear(100, 100, device=device)
        self.seq = nn.Sequential(
            nn.ReLU(),
            nn.Linear(100, 100, device=device),
            nn.ReLU(),
        )
        self.l2 = nn.Linear(100, 100, device=device)

    def forward(self, x):
        return self.l2(self.seq(self.l1(x)))


class CompositeModel(nn.Module):
    def __init__(self, device: torch.device):
        super().__init__()
        self.l1 = nn.Linear(100, 100, device=device)
        self.u1 = UnitModule(device)
        self.u2 = UnitModule(device)
        self.l2 = nn.Linear(100, 100, device=device)

    def forward(self, x):
        return self.l2(self.u2(self.u1(self.l1(x))))


class UnitParamModule(nn.Module):
    def __init__(self, device: torch.device):
        super().__init__()
        self.l = nn.Linear(100, 100, device=device)
        self.seq = nn.Sequential(
            nn.ReLU(),
            nn.Linear(100, 100, device=device),
            nn.ReLU(),
        )
        self.p = nn.Parameter(torch.randn((100, 100), device=device))

    def forward(self, x):
        return torch.mm(self.seq(self.l(x)), self.p)


class CompositeParamModel(nn.Module):
    def __init__(self, device: torch.device):
        super().__init__()
        self.l = nn.Linear(100, 100, device=device)
        self.u1 = UnitModule(device)
        self.u2 = UnitModule(device)
        self.p = nn.Parameter(torch.randn((100, 100), device=device))

    def forward(self, x):
        a = self.u2(self.u1(self.l(x)))
        b = self.p
        return torch.mm(a, b)


class FakeSequential(nn.Module):
    # Define this class to achieve a desired nested wrapping using the module
    # wrap policy with `nn.Sequential`
    def __init__(self, *modules: Tuple[nn.Module, ...]) -> None:
        super().__init__()
        self._module_sequence = list(modules)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        for module in self._module_sequence:
            x = module(x)
        return x


class NestedSequentialModel(nn.Module):
    def __init__(self, device: torch.device) -> None:
        super().__init__()
        # This nested structure exercises traversal order to catch differences
        # between valid traversals (e.g. BFS and DFS variations).
        self.seq1 = nn.Sequential(
            nn.Linear(1, 1, device=device),
            FakeSequential(
                nn.Linear(1, 1, device=device),
                nn.ReLU(),
                FakeSequential(
                    nn.Linear(1, 1, device=device),
                ),
                nn.ReLU(),
            ),
            nn.Linear(1, 2, device=device),
        )
        self.lin = nn.Linear(2, 2, device=device)
        self.seq2 = nn.Sequential(
            nn.ReLU(),
            nn.Linear(2, 3, device=device),
            FakeSequential(
                nn.Linear(3, 2, bias=False, device=device),
                nn.Linear(2, 4, bias=False, device=device),
            ),
        )

        def forward(self, x: torch.Tensor) -> torch.Tensor:
            return self.seq2(self.lin(self.seq1(x)))