Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

edgify / torch   python

Repository URL to install this package:

Version: 2.0.1+cpu 

/ utils / data / _utils / fetch.py

r""""Contains definitions of the methods used by the _BaseDataLoaderIter to fetch
data from an iterable-style or map-style dataset. This logic is shared in both
single- and multi-processing data loading.
"""


class _BaseDatasetFetcher:
    def __init__(self, dataset, auto_collation, collate_fn, drop_last):
        self.dataset = dataset
        self.auto_collation = auto_collation
        self.collate_fn = collate_fn
        self.drop_last = drop_last

    def fetch(self, possibly_batched_index):
        raise NotImplementedError()


class _IterableDatasetFetcher(_BaseDatasetFetcher):
    def __init__(self, dataset, auto_collation, collate_fn, drop_last):
        super().__init__(dataset, auto_collation, collate_fn, drop_last)
        self.dataset_iter = iter(dataset)
        self.ended = False

    def fetch(self, possibly_batched_index):
        if self.ended:
            raise StopIteration

        if self.auto_collation:
            data = []
            for _ in possibly_batched_index:
                try:
                    data.append(next(self.dataset_iter))
                except StopIteration:
                    self.ended = True
                    break
            if len(data) == 0 or (
                self.drop_last and len(data) < len(possibly_batched_index)
            ):
                raise StopIteration
        else:
            data = next(self.dataset_iter)
        return self.collate_fn(data)


class _MapDatasetFetcher(_BaseDatasetFetcher):
    def fetch(self, possibly_batched_index):
        if self.auto_collation:
            if hasattr(self.dataset, "__getitems__") and self.dataset.__getitems__:
                data = self.dataset.__getitems__(possibly_batched_index)
            else:
                data = [self.dataset[idx] for idx in possibly_batched_index]
        else:
            data = self.dataset[possibly_batched_index]
        return self.collate_fn(data)