import functools
from collections import namedtuple
from typing import Callable, Iterator, Sized, TypeVar, Optional, Union, Any, Dict, List
from torch.utils.data.datapipes._decorator import functional_datapipe
from torch.utils.data._utils.collate import default_collate
from torch.utils.data.datapipes.dataframe import dataframe_wrapper as df_wrapper
from torch.utils.data.datapipes.datapipe import IterDataPipe
from torch.utils.data.datapipes.utils.common import (_check_unpickable_fn,
validate_input_col)
__all__ = [
"CollatorIterDataPipe",
"MapperIterDataPipe",
]
T_co = TypeVar("T_co", covariant=True)
@functional_datapipe("map")
class MapperIterDataPipe(IterDataPipe[T_co]):
r"""
Applies a function over each item from the source DataPipe (functional name: ``map``).
The function can be any regular Python function or partial object. Lambda
function is not recommended as it is not supported by pickle.
Args:
datapipe: Source Iterable DataPipe
fn: Function being applied over each item
input_col: Index or indices of data which ``fn`` is applied, such as:
- ``None`` as default to apply ``fn`` to the data directly.
- Integer(s) is used for list/tuple.
- Key(s) is used for dict.
output_col: Index of data where result of ``fn`` is placed. ``output_col`` can be specified
only when ``input_col`` is not ``None``
- ``None`` as default to replace the index that ``input_col`` specified; For ``input_col`` with
multiple indices, the left-most one is used, and other indices will be removed.
- Integer is used for list/tuple. ``-1`` represents to append result at the end.
- Key is used for dict. New key is acceptable.
Example:
>>> # xdoctest: +SKIP
>>> from torchdata.datapipes.iter import IterableWrapper, Mapper
>>> def add_one(x):
... return x + 1
>>> dp = IterableWrapper(range(10))
>>> map_dp_1 = dp.map(add_one) # Invocation via functional form is preferred
>>> list(map_dp_1)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> # We discourage the usage of `lambda` functions as they are not serializable with `pickle`
>>> # Use `functools.partial` or explicitly define the function instead
>>> map_dp_2 = Mapper(dp, lambda x: x + 1)
>>> list(map_dp_2)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
"""
datapipe: IterDataPipe
fn: Callable
def __init__(
self,
datapipe: IterDataPipe,
fn: Callable,
input_col=None,
output_col=None,
) -> None:
super().__init__()
self.datapipe = datapipe
_check_unpickable_fn(fn)
self.fn = fn # type: ignore[assignment]
self.input_col = input_col
if input_col is None and output_col is not None:
raise ValueError("`output_col` must be None when `input_col` is None.")
if isinstance(output_col, (list, tuple)):
if len(output_col) > 1:
raise ValueError("`output_col` must be a single-element list or tuple")
output_col = output_col[0]
self.output_col = output_col
validate_input_col(fn, input_col)
def _apply_fn(self, data):
if self.input_col is None and self.output_col is None:
return self.fn(data)
if self.input_col is None:
res = self.fn(data)
elif isinstance(self.input_col, (list, tuple)):
args = tuple(data[col] for col in self.input_col)
res = self.fn(*args)
else:
res = self.fn(data[self.input_col])
# Copy tuple to list and run in-place modification because tuple is immutable.
if isinstance(data, tuple):
t_flag = True
data = list(data)
else:
t_flag = False
if self.output_col is None:
if isinstance(self.input_col, (list, tuple)):
data[self.input_col[0]] = res
for idx in sorted(self.input_col[1:], reverse=True):
del data[idx]
else:
data[self.input_col] = res
else:
if self.output_col == -1:
data.append(res)
else:
data[self.output_col] = res
# Convert list back to tuple
return tuple(data) if t_flag else data
def __iter__(self) -> Iterator[T_co]:
for data in self.datapipe:
yield self._apply_fn(data)
def __len__(self) -> int:
if isinstance(self.datapipe, Sized):
return len(self.datapipe)
raise TypeError(
"{} instance doesn't have valid length".format(type(self).__name__)
)
def _collate_helper(conversion, item):
# TODO(VitalyFedyunin): Verify that item is any sort of batch
if len(item.items) > 1:
# TODO(VitalyFedyunin): Compact all batch dataframes into one
raise Exception("Only supports one DataFrame per batch")
df = item[0]
columns_name = df_wrapper.get_columns(df)
tuple_names: List = []
tuple_values: List = []
for name in conversion.keys():
if name not in columns_name:
raise Exception("Conversion keys missmatch")
for name in columns_name:
if name in conversion:
if not callable(conversion[name]):
raise Exception('Collate (DF)DataPipe requires callable as dict values')
collation_fn = conversion[name]
else:
# TODO(VitalyFedyunin): Add default collation into df_wrapper
try:
import torcharrow.pytorch as tap # type: ignore[import]
collation_fn = tap.rec.Default()
except Exception as e:
raise Exception("unable to import default collation function from the TorchArrow") from e
tuple_names.append(str(name))
value = collation_fn(df[name])
tuple_values.append(value)
# TODO(VitalyFedyunin): We can dynamically extract types from the tuple_values here
# TODO(VitalyFedyunin): Instead of ignoring mypy error, make sure tuple_names is not empty
tpl_cls = namedtuple("CollateResult", tuple_names) # type: ignore[misc]
tuple = tpl_cls(*tuple_values)
return tuple
@functional_datapipe("collate")
class CollatorIterDataPipe(MapperIterDataPipe):
r"""
Collates samples from DataPipe to Tensor(s) by a custom collate function (functional name: ``collate``).
By default, it uses :func:`torch.utils.data.default_collate`.
.. note::
While writing a custom collate function, you can import :func:`torch.utils.data.default_collate` for the
default behavior and `functools.partial` to specify any additional arguments.
Args:
datapipe: Iterable DataPipe being collated
collate_fn: Customized collate function to collect and combine data or a batch of data.
Default function collates to Tensor(s) based on data type.
Example:
>>> # xdoctest: +SKIP
>>> # Convert integer data to float Tensor
>>> class MyIterDataPipe(torch.utils.data.IterDataPipe):
... def __init__(self, start, end):
... super(MyIterDataPipe).__init__()
... assert end > start, "this example code only works with end >= start"
... self.start = start
... self.end = end
...
... def __iter__(self):
... return iter(range(self.start, self.end))
...
... def __len__(self):
... return self.end - self.start
...
>>> ds = MyIterDataPipe(start=3, end=7)
>>> print(list(ds))
[3, 4, 5, 6]
>>> def collate_fn(batch):
... return torch.tensor(batch, dtype=torch.float)
...
>>> collated_ds = CollateIterDataPipe(ds, collate_fn=collate_fn)
>>> print(list(collated_ds))
[tensor(3.), tensor(4.), tensor(5.), tensor(6.)]
"""
def __init__(
self,
datapipe: IterDataPipe,
conversion: Optional[
Union[
Callable[..., Any],
Dict[Union[str, Any], Union[Callable, Any]],
]
] = default_collate,
collate_fn: Optional[Callable] = None,
) -> None:
# TODO(VitalyFedyunin): Replace `Callable[..., Any]` with `Callable[[IColumn], Any]`
# TODO(VitalyFedyunin): Replace with `Dict[Union[str, IColumn], Union[Callable, Enum]]`
if collate_fn is not None:
super().__init__(datapipe, fn=collate_fn)
else:
if callable(conversion):
super().__init__(datapipe, fn=conversion)
else:
# TODO(VitalyFedyunin): Validate passed dictionary
collate_fn = functools.partial(_collate_helper, conversion)
super().__init__(datapipe, fn=collate_fn)