import io
import pickle
import warnings
from collections.abc import Collection
from typing import Dict, List, Optional, Set, Tuple, Type, Union
from torch.utils.data import IterDataPipe, MapDataPipe
from torch.utils.data._utils.serialization import DILL_AVAILABLE
__all__ = ["traverse", "traverse_dps"]
DataPipe = Union[IterDataPipe, MapDataPipe]
DataPipeGraph = Dict[int, Tuple[DataPipe, "DataPipeGraph"]] # type: ignore[misc]
def _stub_unpickler():
return "STUB"
# TODO(VitalyFedyunin): Make sure it works without dill module installed
def _list_connected_datapipes(scan_obj: DataPipe, only_datapipe: bool, cache: Set[int]) -> List[DataPipe]:
f = io.BytesIO()
p = pickle.Pickler(f) # Not going to work for lambdas, but dill infinite loops on typing and can't be used as is
if DILL_AVAILABLE:
from dill import Pickler as dill_Pickler
d = dill_Pickler(f)
else:
d = None
captured_connections = []
def getstate_hook(ori_state):
state = None
if isinstance(ori_state, dict):
state = {} # type: ignore[assignment]
for k, v in ori_state.items():
if isinstance(v, (IterDataPipe, MapDataPipe, Collection)):
state[k] = v # type: ignore[attr-defined]
elif isinstance(ori_state, (tuple, list)):
state = [] # type: ignore[assignment]
for v in ori_state:
if isinstance(v, (IterDataPipe, MapDataPipe, Collection)):
state.append(v) # type: ignore[attr-defined]
elif isinstance(ori_state, (IterDataPipe, MapDataPipe, Collection)):
state = ori_state # type: ignore[assignment]
return state
def reduce_hook(obj):
if obj == scan_obj or id(obj) in cache:
raise NotImplementedError
else:
captured_connections.append(obj)
# Adding id to remove duplicate DataPipe serialized at the same level
cache.add(id(obj))
return _stub_unpickler, ()
datapipe_classes: Tuple[Type[DataPipe]] = (IterDataPipe, MapDataPipe) # type: ignore[assignment]
try:
for cls in datapipe_classes:
cls.set_reduce_ex_hook(reduce_hook)
if only_datapipe:
cls.set_getstate_hook(getstate_hook)
try:
p.dump(scan_obj)
except (pickle.PickleError, AttributeError, TypeError):
if DILL_AVAILABLE:
d.dump(scan_obj)
else:
raise
finally:
for cls in datapipe_classes:
cls.set_reduce_ex_hook(None)
if only_datapipe:
cls.set_getstate_hook(None)
if DILL_AVAILABLE:
from dill import extend as dill_extend
dill_extend(False) # Undo change to dispatch table
return captured_connections
def traverse_dps(datapipe: DataPipe) -> DataPipeGraph:
r"""
Traverse the DataPipes and their attributes to extract the DataPipe graph.
This only looks into the attribute from each DataPipe that is either a
DataPipe and a Python collection object such as ``list``, ``tuple``,
``set`` and ``dict``.
Args:
datapipe: the end DataPipe of the graph
Returns:
A graph represented as a nested dictionary, where keys are ids of DataPipe instances
and values are tuples of DataPipe instance and the sub-graph
"""
cache: Set[int] = set()
return _traverse_helper(datapipe, only_datapipe=True, cache=cache)
def traverse(datapipe: DataPipe, only_datapipe: Optional[bool] = None) -> DataPipeGraph:
r"""
[Deprecated] Traverse the DataPipes and their attributes to extract the DataPipe graph. When
``only_dataPipe`` is specified as ``True``, it would only look into the attribute
from each DataPipe that is either a DataPipe and a Python collection object such as
``list``, ``tuple``, ``set`` and ``dict``.
Note:
This function is deprecated. Please use `traverse_dps` instead.
Args:
datapipe: the end DataPipe of the graph
only_datapipe: If ``False`` (default), all attributes of each DataPipe are traversed.
This argument is deprecating and will be removed after the next release.
Returns:
A graph represented as a nested dictionary, where keys are ids of DataPipe instances
and values are tuples of DataPipe instance and the sub-graph
"""
msg = "`traverse` function and will be removed after 1.13. " \
"Please use `traverse_dps` instead."
if not only_datapipe:
msg += " And, the behavior will be changed to the equivalent of `only_datapipe=True`."
warnings.warn(msg, FutureWarning)
if only_datapipe is None:
only_datapipe = False
cache: Set[int] = set()
return _traverse_helper(datapipe, only_datapipe, cache)
# Add cache here to prevent infinite recursion on DataPipe
def _traverse_helper(datapipe: DataPipe, only_datapipe: bool, cache: Set[int]) -> DataPipeGraph:
if not isinstance(datapipe, (IterDataPipe, MapDataPipe)):
raise RuntimeError("Expected `IterDataPipe` or `MapDataPipe`, but {} is found".format(type(datapipe)))
dp_id = id(datapipe)
if dp_id in cache:
return {}
cache.add(dp_id)
# Using cache.copy() here is to prevent the same DataPipe pollutes the cache on different paths
items = _list_connected_datapipes(datapipe, only_datapipe, cache.copy())
d: DataPipeGraph = {dp_id: (datapipe, {})}
for item in items:
# Using cache.copy() here is to prevent recursion on a single path rather than global graph
# Single DataPipe can present multiple times in different paths in graph
d[dp_id][1].update(_traverse_helper(item, only_datapipe, cache.copy()))
return d