import math
import torch
from torch.utils.data import Sampler
import torch.distributed as dist
from torchvision.datasets.video_utils import VideoClips
from typing import Optional, List, Iterator, Sized, Union, cast
class DistributedSampler(Sampler):
"""
Extension of DistributedSampler, as discussed in
https://github.com/pytorch/pytorch/issues/23430
Example:
dataset: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
num_replicas: 4
shuffle: False
when group_size = 1
RANK | shard_dataset
=========================
rank_0 | [0, 4, 8, 12]
rank_1 | [1, 5, 9, 13]
rank_2 | [2, 6, 10, 0]
rank_3 | [3, 7, 11, 1]
when group_size = 2
RANK | shard_dataset
=========================
rank_0 | [0, 1, 8, 9]
rank_1 | [2, 3, 10, 11]
rank_2 | [4, 5, 12, 13]
rank_3 | [6, 7, 0, 1]
"""
def __init__(
self,
dataset: Sized,
num_replicas: Optional[int] = None,
rank: Optional[int] = None,
shuffle: bool = False,
group_size: int = 1,
) -> None:
if num_replicas is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = dist.get_rank()
assert len(dataset) % group_size == 0, (
"dataset length must be a multiplier of group size"
"dataset length: %d, group size: %d" % (len(dataset), group_size)
)
self.dataset = dataset
self.group_size = group_size
self.num_replicas = num_replicas
self.rank = rank
self.epoch = 0
dataset_group_length = len(dataset) // group_size
self.num_group_samples = int(
math.ceil(dataset_group_length * 1.0 / self.num_replicas)
)
self.num_samples = self.num_group_samples * group_size
self.total_size = self.num_samples * self.num_replicas
self.shuffle = shuffle
def __iter__(self) -> Iterator[int]:
# deterministically shuffle based on epoch
g = torch.Generator()
g.manual_seed(self.epoch)
indices: Union[torch.Tensor, List[int]]
if self.shuffle:
indices = torch.randperm(len(self.dataset), generator=g).tolist()
else:
indices = list(range(len(self.dataset)))
# add extra samples to make it evenly divisible
indices += indices[:(self.total_size - len(indices))]
assert len(indices) == self.total_size
total_group_size = self.total_size // self.group_size
indices = torch.reshape(
torch.LongTensor(indices), (total_group_size, self.group_size)
)
# subsample
indices = indices[self.rank:total_group_size:self.num_replicas, :]
indices = torch.reshape(indices, (-1,)).tolist()
assert len(indices) == self.num_samples
if isinstance(self.dataset, Sampler):
orig_indices = list(iter(self.dataset))
indices = [orig_indices[i] for i in indices]
return iter(indices)
def __len__(self) -> int:
return self.num_samples
def set_epoch(self, epoch: int) -> None:
self.epoch = epoch
class UniformClipSampler(Sampler):
"""
Sample `num_video_clips_per_video` clips for each video, equally spaced.
When number of unique clips in the video is fewer than num_video_clips_per_video,
repeat the clips until `num_video_clips_per_video` clips are collected
Arguments:
video_clips (VideoClips): video clips to sample from
num_clips_per_video (int): number of clips to be sampled per video
"""
def __init__(self, video_clips: VideoClips, num_clips_per_video: int) -> None:
if not isinstance(video_clips, VideoClips):
raise TypeError("Expected video_clips to be an instance of VideoClips, "
"got {}".format(type(video_clips)))
self.video_clips = video_clips
self.num_clips_per_video = num_clips_per_video
def __iter__(self) -> Iterator[int]:
idxs = []
s = 0
# select num_clips_per_video for each video, uniformly spaced
for c in self.video_clips.clips:
length = len(c)
if length == 0:
# corner case where video decoding fails
continue
sampled = (
torch.linspace(s, s + length - 1, steps=self.num_clips_per_video)
.floor()
.to(torch.int64)
)
s += length
idxs.append(sampled)
return iter(cast(List[int], torch.cat(idxs).tolist()))
def __len__(self) -> int:
return sum(
self.num_clips_per_video for c in self.video_clips.clips if len(c) > 0
)
class RandomClipSampler(Sampler):
"""
Samples at most `max_video_clips_per_video` clips for each video randomly
Arguments:
video_clips (VideoClips): video clips to sample from
max_clips_per_video (int): maximum number of clips to be sampled per video
"""
def __init__(self, video_clips: VideoClips, max_clips_per_video: int) -> None:
if not isinstance(video_clips, VideoClips):
raise TypeError("Expected video_clips to be an instance of VideoClips, "
"got {}".format(type(video_clips)))
self.video_clips = video_clips
self.max_clips_per_video = max_clips_per_video
def __iter__(self) -> Iterator[int]:
idxs = []
s = 0
# select at most max_clips_per_video for each video, randomly
for c in self.video_clips.clips:
length = len(c)
size = min(length, self.max_clips_per_video)
sampled = torch.randperm(length)[:size] + s
s += length
idxs.append(sampled)
idxs_ = torch.cat(idxs)
# shuffle all clips randomly
perm = torch.randperm(len(idxs_))
return iter(idxs_[perm].tolist())
def __len__(self) -> int:
return sum(min(len(c), self.max_clips_per_video) for c in self.video_clips.clips)