Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

edgify / torchvision   python

Repository URL to install this package:

Version: 0.8.2 

/ io / _video_opt.py


import importlib
import math
import os
import warnings
from fractions import Fraction
from typing import List, Tuple

import numpy as np
import torch


_HAS_VIDEO_OPT = False

try:
    lib_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))

    loader_details = (
        importlib.machinery.ExtensionFileLoader,
        importlib.machinery.EXTENSION_SUFFIXES
    )

    extfinder = importlib.machinery.FileFinder(lib_dir, loader_details)
    ext_specs = extfinder.find_spec("video_reader")

    if os.name == 'nt':
        # Load the video_reader extension using LoadLibraryExW
        import ctypes
        import sys

        kernel32 = ctypes.WinDLL('kernel32.dll', use_last_error=True)
        with_load_library_flags = hasattr(kernel32, 'AddDllDirectory')
        prev_error_mode = kernel32.SetErrorMode(0x0001)

        if with_load_library_flags:
            kernel32.LoadLibraryExW.restype = ctypes.c_void_p

        if ext_specs is not None:
            res = kernel32.LoadLibraryExW(ext_specs.origin, None, 0x00001100)
            if res is None:
                err = ctypes.WinError(ctypes.get_last_error())
                err.strerror += (f' Error loading "{ext_specs.origin}" or any or '
                                 'its dependencies.')
                raise err

        kernel32.SetErrorMode(prev_error_mode)

    if ext_specs is not None:
        torch.ops.load_library(ext_specs.origin)
        _HAS_VIDEO_OPT = True
except (ImportError, OSError):
    pass


default_timebase = Fraction(0, 1)


# simple class for torch scripting
# the complex Fraction class from fractions module is not scriptable
class Timebase(object):
    __annotations__ = {"numerator": int, "denominator": int}
    __slots__ = ["numerator", "denominator"]

    def __init__(
        self,
        numerator,  # type: int
        denominator,  # type: int
    ):
        # type: (...) -> None
        self.numerator = numerator
        self.denominator = denominator


class VideoMetaData(object):
    __annotations__ = {
        "has_video": bool,
        "video_timebase": Timebase,
        "video_duration": float,
        "video_fps": float,
        "has_audio": bool,
        "audio_timebase": Timebase,
        "audio_duration": float,
        "audio_sample_rate": float,
    }
    __slots__ = [
        "has_video",
        "video_timebase",
        "video_duration",
        "video_fps",
        "has_audio",
        "audio_timebase",
        "audio_duration",
        "audio_sample_rate",
    ]

    def __init__(self):
        self.has_video = False
        self.video_timebase = Timebase(0, 1)
        self.video_duration = 0.0
        self.video_fps = 0.0
        self.has_audio = False
        self.audio_timebase = Timebase(0, 1)
        self.audio_duration = 0.0
        self.audio_sample_rate = 0.0


def _validate_pts(pts_range):
    # type: (List[int]) -> None

    if pts_range[1] > 0:
        assert (
            pts_range[0] <= pts_range[1]
        ), """Start pts should not be smaller than end pts, got
            start pts: {0:d} and end pts: {1:d}""".format(
            pts_range[0],
            pts_range[1],
        )


def _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration):
    # type: (torch.Tensor,torch.Tensor,torch.Tensor,torch.Tensor,torch.Tensor,torch.Tensor) -> VideoMetaData
    """
    Build update VideoMetaData struct with info about the video
    """
    meta = VideoMetaData()
    if vtimebase.numel() > 0:
        meta.video_timebase = Timebase(
            int(vtimebase[0].item()), int(vtimebase[1].item())
        )
        timebase = vtimebase[0].item() / float(vtimebase[1].item())
        if vduration.numel() > 0:
            meta.has_video = True
            meta.video_duration = float(vduration.item()) * timebase
    if vfps.numel() > 0:
        meta.video_fps = float(vfps.item())
    if atimebase.numel() > 0:
        meta.audio_timebase = Timebase(
            int(atimebase[0].item()), int(atimebase[1].item())
        )
        timebase = atimebase[0].item() / float(atimebase[1].item())
        if aduration.numel() > 0:
            meta.has_audio = True
            meta.audio_duration = float(aduration.item()) * timebase
    if asample_rate.numel() > 0:
        meta.audio_sample_rate = float(asample_rate.item())

    return meta


def _align_audio_frames(aframes, aframe_pts, audio_pts_range):
    # type: (torch.Tensor, torch.Tensor, List[int]) -> torch.Tensor
    start, end = aframe_pts[0], aframe_pts[-1]
    num_samples = aframes.size(0)
    step_per_aframe = float(end - start + 1) / float(num_samples)
    s_idx = 0
    e_idx = num_samples
    if start < audio_pts_range[0]:
        s_idx = int((audio_pts_range[0] - start) / step_per_aframe)
    if end > audio_pts_range[1]:
        e_idx = int((audio_pts_range[1] - end) / step_per_aframe)
    return aframes[s_idx:e_idx, :]


def _read_video_from_file(
    filename,
    seek_frame_margin=0.25,
    read_video_stream=True,
    video_width=0,
    video_height=0,
    video_min_dimension=0,
    video_max_dimension=0,
    video_pts_range=(0, -1),
    video_timebase=default_timebase,
    read_audio_stream=True,
    audio_samples=0,
    audio_channels=0,
    audio_pts_range=(0, -1),
    audio_timebase=default_timebase,
):
    """
    Reads a video from a file, returning both the video frames as well as
    the audio frames

    Args
    ----------
    filename : str
        path to the video file
    seek_frame_margin: double, optional
        seeking frame in the stream is imprecise. Thus, when video_start_pts
        is specified, we seek the pts earlier by seek_frame_margin seconds
    read_video_stream: int, optional
        whether read video stream. If yes, set to 1. Otherwise, 0
    video_width/video_height/video_min_dimension/video_max_dimension: int
        together decide the size of decoded frames
        - When video_width = 0, video_height = 0, video_min_dimension = 0,
            and video_max_dimension = 0, keep the orignal frame resolution
        - When video_width = 0, video_height = 0, video_min_dimension != 0,
            and video_max_dimension = 0, keep the aspect ratio and resize the
            frame so that shorter edge size is video_min_dimension
        - When video_width = 0, video_height = 0, video_min_dimension = 0,
            and video_max_dimension != 0, keep the aspect ratio and resize
            the frame so that longer edge size is video_max_dimension
        - When video_width = 0, video_height = 0, video_min_dimension != 0,
            and video_max_dimension != 0, resize the frame so that shorter
            edge size is video_min_dimension, and longer edge size is
            video_max_dimension. The aspect ratio may not be preserved
        - When video_width = 0, video_height != 0, video_min_dimension = 0,
            and video_max_dimension = 0, keep the aspect ratio and resize
            the frame so that frame video_height is $video_height
        - When video_width != 0, video_height == 0, video_min_dimension = 0,
            and video_max_dimension = 0, keep the aspect ratio and resize
            the frame so that frame video_width is $video_width
        - When video_width != 0, video_height != 0, video_min_dimension = 0,
            and video_max_dimension = 0, resize the frame so that frame
            video_width and  video_height are set to $video_width and
            $video_height, respectively
    video_pts_range : list(int), optional
        the start and end presentation timestamp of video stream
    video_timebase: Fraction, optional
        a Fraction rational number which denotes timebase in video stream
    read_audio_stream: int, optional
        whether read audio stream. If yes, set to 1. Otherwise, 0
    audio_samples: int, optional
        audio sampling rate
    audio_channels: int optional
        audio channels
    audio_pts_range : list(int), optional
        the start and end presentation timestamp of audio stream
    audio_timebase: Fraction, optional
        a Fraction rational number which denotes time base in audio stream

    Returns
    -------
    vframes : Tensor[T, H, W, C]
        the `T` video frames
    aframes : Tensor[L, K]
        the audio frames, where `L` is the number of points and
            `K` is the number of audio_channels
    info : Dict
        metadata for the video and audio. Can contain the fields video_fps (float)
        and audio_fps (int)
    """
    _validate_pts(video_pts_range)
    _validate_pts(audio_pts_range)

    result = torch.ops.video_reader.read_video_from_file(
        filename,
        seek_frame_margin,
        0,  # getPtsOnly
        read_video_stream,
        video_width,
        video_height,
        video_min_dimension,
        video_max_dimension,
        video_pts_range[0],
        video_pts_range[1],
        video_timebase.numerator,
        video_timebase.denominator,
        read_audio_stream,
        audio_samples,
        audio_channels,
        audio_pts_range[0],
        audio_pts_range[1],
        audio_timebase.numerator,
        audio_timebase.denominator,
    )
    vframes, _vframe_pts, vtimebase, vfps, vduration, \
        aframes, aframe_pts, atimebase, asample_rate, aduration = (
            result
        )
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
    if aframes.numel() > 0:
        # when audio stream is found
        aframes = _align_audio_frames(aframes, aframe_pts, audio_pts_range)
    return vframes, aframes, info


def _read_video_timestamps_from_file(filename):
    """
    Decode all video- and audio frames in the video. Only pts
    (presentation timestamp) is returned. The actual frame pixel data is not
    copied. Thus, it is much faster than read_video(...)
    """
    result = torch.ops.video_reader.read_video_from_file(
        filename,
        0,  # seek_frame_margin
        1,  # getPtsOnly
        1,  # read_video_stream
        0,  # video_width
        0,  # video_height
        0,  # video_min_dimension
        0,  # video_max_dimension
        0,  # video_start_pts
        -1,  # video_end_pts
        0,  # video_timebase_num
        1,  # video_timebase_den
        1,  # read_audio_stream
        0,  # audio_samples
        0,  # audio_channels
        0,  # audio_start_pts
        -1,  # audio_end_pts
        0,  # audio_timebase_num
        1,  # audio_timebase_den
    )
    _vframes, vframe_pts, vtimebase, vfps, vduration, \
        _aframes, aframe_pts, atimebase, asample_rate, aduration = (result)
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)

    vframe_pts = vframe_pts.numpy().tolist()
    aframe_pts = aframe_pts.numpy().tolist()
    return vframe_pts, aframe_pts, info


def _probe_video_from_file(filename):
    """
    Probe a video file and return VideoMetaData with info about the video
    """
    result = torch.ops.video_reader.probe_video_from_file(filename)
    vtimebase, vfps, vduration, atimebase, asample_rate, aduration = result
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
    return info


def _read_video_from_memory(
    video_data,  # type: torch.Tensor
    seek_frame_margin=0.25,  # type: float
    read_video_stream=1,  # type: int
    video_width=0,  # type: int
    video_height=0,  # type: int
    video_min_dimension=0,  # type: int
    video_max_dimension=0,  # type: int
    video_pts_range=(0, -1),  # type: List[int]
    video_timebase_numerator=0,  # type: int
    video_timebase_denominator=1,  # type: int
    read_audio_stream=1,  # type: int
    audio_samples=0,  # type: int
    audio_channels=0,  # type: int
    audio_pts_range=(0, -1),  # type: List[int]
    audio_timebase_numerator=0,  # type: int
    audio_timebase_denominator=1,  # type: int
):
    # type: (...) -> Tuple[torch.Tensor, torch.Tensor]
    """
    Reads a video from memory, returning both the video frames as well as
    the audio frames
Loading ...