import math
import torch
from torch.jit.annotations import List, Tuple
from torch import Tensor
import torchvision
class BalancedPositiveNegativeSampler(object):
"""
This class samples batches, ensuring that they contain a fixed proportion of positives
"""
def __init__(self, batch_size_per_image, positive_fraction):
# type: (int, float) -> None
"""
Arguments:
batch_size_per_image (int): number of elements to be selected per image
positive_fraction (float): percentace of positive elements per batch
"""
self.batch_size_per_image = batch_size_per_image
self.positive_fraction = positive_fraction
def __call__(self, matched_idxs):
# type: (List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]
"""
Arguments:
matched idxs: list of tensors containing -1, 0 or positive values.
Each tensor corresponds to a specific image.
-1 values are ignored, 0 are considered as negatives and > 0 as
positives.
Returns:
pos_idx (list[tensor])
neg_idx (list[tensor])
Returns two lists of binary masks for each image.
The first list contains the positive elements that were selected,
and the second list the negative example.
"""
pos_idx = []
neg_idx = []
for matched_idxs_per_image in matched_idxs:
positive = torch.where(matched_idxs_per_image >= 1)[0]
negative = torch.where(matched_idxs_per_image == 0)[0]
num_pos = int(self.batch_size_per_image * self.positive_fraction)
# protect against not enough positive examples
num_pos = min(positive.numel(), num_pos)
num_neg = self.batch_size_per_image - num_pos
# protect against not enough negative examples
num_neg = min(negative.numel(), num_neg)
# randomly select positive and negative examples
perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]
pos_idx_per_image = positive[perm1]
neg_idx_per_image = negative[perm2]
# create binary mask from indices
pos_idx_per_image_mask = torch.zeros_like(
matched_idxs_per_image, dtype=torch.uint8
)
neg_idx_per_image_mask = torch.zeros_like(
matched_idxs_per_image, dtype=torch.uint8
)
pos_idx_per_image_mask[pos_idx_per_image] = 1
neg_idx_per_image_mask[neg_idx_per_image] = 1
pos_idx.append(pos_idx_per_image_mask)
neg_idx.append(neg_idx_per_image_mask)
return pos_idx, neg_idx
@torch.jit._script_if_tracing
def encode_boxes(reference_boxes, proposals, weights):
# type: (torch.Tensor, torch.Tensor, torch.Tensor) -> torch.Tensor
"""
Encode a set of proposals with respect to some
reference boxes
Arguments:
reference_boxes (Tensor): reference boxes
proposals (Tensor): boxes to be encoded
"""
# perform some unpacking to make it JIT-fusion friendly
wx = weights[0]
wy = weights[1]
ww = weights[2]
wh = weights[3]
proposals_x1 = proposals[:, 0].unsqueeze(1)
proposals_y1 = proposals[:, 1].unsqueeze(1)
proposals_x2 = proposals[:, 2].unsqueeze(1)
proposals_y2 = proposals[:, 3].unsqueeze(1)
reference_boxes_x1 = reference_boxes[:, 0].unsqueeze(1)
reference_boxes_y1 = reference_boxes[:, 1].unsqueeze(1)
reference_boxes_x2 = reference_boxes[:, 2].unsqueeze(1)
reference_boxes_y2 = reference_boxes[:, 3].unsqueeze(1)
# implementation starts here
ex_widths = proposals_x2 - proposals_x1
ex_heights = proposals_y2 - proposals_y1
ex_ctr_x = proposals_x1 + 0.5 * ex_widths
ex_ctr_y = proposals_y1 + 0.5 * ex_heights
gt_widths = reference_boxes_x2 - reference_boxes_x1
gt_heights = reference_boxes_y2 - reference_boxes_y1
gt_ctr_x = reference_boxes_x1 + 0.5 * gt_widths
gt_ctr_y = reference_boxes_y1 + 0.5 * gt_heights
targets_dx = wx * (gt_ctr_x - ex_ctr_x) / ex_widths
targets_dy = wy * (gt_ctr_y - ex_ctr_y) / ex_heights
targets_dw = ww * torch.log(gt_widths / ex_widths)
targets_dh = wh * torch.log(gt_heights / ex_heights)
targets = torch.cat((targets_dx, targets_dy, targets_dw, targets_dh), dim=1)
return targets
class BoxCoder(object):
"""
This class encodes and decodes a set of bounding boxes into
the representation used for training the regressors.
"""
def __init__(self, weights, bbox_xform_clip=math.log(1000. / 16)):
# type: (Tuple[float, float, float, float], float) -> None
"""
Arguments:
weights (4-element tuple)
bbox_xform_clip (float)
"""
self.weights = weights
self.bbox_xform_clip = bbox_xform_clip
def encode(self, reference_boxes, proposals):
# type: (List[Tensor], List[Tensor]) -> List[Tensor]
boxes_per_image = [len(b) for b in reference_boxes]
reference_boxes = torch.cat(reference_boxes, dim=0)
proposals = torch.cat(proposals, dim=0)
targets = self.encode_single(reference_boxes, proposals)
return targets.split(boxes_per_image, 0)
def encode_single(self, reference_boxes, proposals):
"""
Encode a set of proposals with respect to some
reference boxes
Arguments:
reference_boxes (Tensor): reference boxes
proposals (Tensor): boxes to be encoded
"""
dtype = reference_boxes.dtype
device = reference_boxes.device
weights = torch.as_tensor(self.weights, dtype=dtype, device=device)
targets = encode_boxes(reference_boxes, proposals, weights)
return targets
def decode(self, rel_codes, boxes):
# type: (Tensor, List[Tensor]) -> Tensor
assert isinstance(boxes, (list, tuple))
assert isinstance(rel_codes, torch.Tensor)
boxes_per_image = [b.size(0) for b in boxes]
concat_boxes = torch.cat(boxes, dim=0)
box_sum = 0
for val in boxes_per_image:
box_sum += val
pred_boxes = self.decode_single(
rel_codes.reshape(box_sum, -1), concat_boxes
)
return pred_boxes.reshape(box_sum, -1, 4)
def decode_single(self, rel_codes, boxes):
"""
From a set of original boxes and encoded relative box offsets,
get the decoded boxes.
Arguments:
rel_codes (Tensor): encoded boxes
boxes (Tensor): reference boxes.
"""
boxes = boxes.to(rel_codes.dtype)
widths = boxes[:, 2] - boxes[:, 0]
heights = boxes[:, 3] - boxes[:, 1]
ctr_x = boxes[:, 0] + 0.5 * widths
ctr_y = boxes[:, 1] + 0.5 * heights
wx, wy, ww, wh = self.weights
dx = rel_codes[:, 0::4] / wx
dy = rel_codes[:, 1::4] / wy
dw = rel_codes[:, 2::4] / ww
dh = rel_codes[:, 3::4] / wh
# Prevent sending too large values into torch.exp()
dw = torch.clamp(dw, max=self.bbox_xform_clip)
dh = torch.clamp(dh, max=self.bbox_xform_clip)
pred_ctr_x = dx * widths[:, None] + ctr_x[:, None]
pred_ctr_y = dy * heights[:, None] + ctr_y[:, None]
pred_w = torch.exp(dw) * widths[:, None]
pred_h = torch.exp(dh) * heights[:, None]
pred_boxes1 = pred_ctr_x - torch.tensor(0.5, dtype=pred_ctr_x.dtype, device=pred_w.device) * pred_w
pred_boxes2 = pred_ctr_y - torch.tensor(0.5, dtype=pred_ctr_y.dtype, device=pred_h.device) * pred_h
pred_boxes3 = pred_ctr_x + torch.tensor(0.5, dtype=pred_ctr_x.dtype, device=pred_w.device) * pred_w
pred_boxes4 = pred_ctr_y + torch.tensor(0.5, dtype=pred_ctr_y.dtype, device=pred_h.device) * pred_h
pred_boxes = torch.stack((pred_boxes1, pred_boxes2, pred_boxes3, pred_boxes4), dim=2).flatten(1)
return pred_boxes
class Matcher(object):
"""
This class assigns to each predicted "element" (e.g., a box) a ground-truth
element. Each predicted element will have exactly zero or one matches; each
ground-truth element may be assigned to zero or more predicted elements.
Matching is based on the MxN match_quality_matrix, that characterizes how well
each (ground-truth, predicted)-pair match. For example, if the elements are
boxes, the matrix may contain box IoU overlap values.
The matcher returns a tensor of size N containing the index of the ground-truth
element m that matches to prediction n. If there is no match, a negative value
is returned.
"""
BELOW_LOW_THRESHOLD = -1
BETWEEN_THRESHOLDS = -2
__annotations__ = {
'BELOW_LOW_THRESHOLD': int,
'BETWEEN_THRESHOLDS': int,
}
def __init__(self, high_threshold, low_threshold, allow_low_quality_matches=False):
# type: (float, float, bool) -> None
"""
Args:
high_threshold (float): quality values greater than or equal to
this value are candidate matches.
low_threshold (float): a lower quality threshold used to stratify
matches into three levels:
1) matches >= high_threshold
2) BETWEEN_THRESHOLDS matches in [low_threshold, high_threshold)
3) BELOW_LOW_THRESHOLD matches in [0, low_threshold)
allow_low_quality_matches (bool): if True, produce additional matches
for predictions that have only low-quality match candidates. See
set_low_quality_matches_ for more details.
"""
self.BELOW_LOW_THRESHOLD = -1
self.BETWEEN_THRESHOLDS = -2
assert low_threshold <= high_threshold
self.high_threshold = high_threshold
self.low_threshold = low_threshold
self.allow_low_quality_matches = allow_low_quality_matches
def __call__(self, match_quality_matrix):
"""
Args:
match_quality_matrix (Tensor[float]): an MxN tensor, containing the
pairwise quality between M ground-truth elements and N predicted elements.
Returns:
matches (Tensor[int64]): an N tensor where N[i] is a matched gt in
[0, M - 1] or a negative value indicating that prediction i could not
be matched.
"""
if match_quality_matrix.numel() == 0:
# empty targets or proposals not supported during training
if match_quality_matrix.shape[0] == 0:
raise ValueError(
"No ground-truth boxes available for one of the images "
"during training")
else:
raise ValueError(
"No proposal boxes available for one of the images "
"during training")
# match_quality_matrix is M (gt) x N (predicted)
# Max over gt elements (dim 0) to find best gt candidate for each prediction
matched_vals, matches = match_quality_matrix.max(dim=0)
if self.allow_low_quality_matches:
all_matches = matches.clone()
else:
all_matches = None
# Assign candidate matches with low quality to negative (unassigned) values
below_low_threshold = matched_vals < self.low_threshold
between_thresholds = (matched_vals >= self.low_threshold) & (
matched_vals < self.high_threshold
)
matches[below_low_threshold] = self.BELOW_LOW_THRESHOLD
matches[between_thresholds] = self.BETWEEN_THRESHOLDS
if self.allow_low_quality_matches:
assert all_matches is not None
self.set_low_quality_matches_(matches, all_matches, match_quality_matrix)
return matches
def set_low_quality_matches_(self, matches, all_matches, match_quality_matrix):
"""
Produce additional matches for predictions that have only low-quality matches.
Specifically, for each ground-truth find the set of predictions that have
maximum overlap with it (including ties); for each prediction in that set, if
it is unmatched, then match it to the ground-truth with which it has the highest
quality value.
"""
# For each gt, find the prediction with which it has highest quality
highest_quality_foreach_gt, _ = match_quality_matrix.max(dim=1)
# Find highest quality match available, even if it is low, including ties
gt_pred_pairs_of_highest_quality = torch.where(
match_quality_matrix == highest_quality_foreach_gt[:, None]
)
# Example gt_pred_pairs_of_highest_quality:
# tensor([[ 0, 39796],
# [ 1, 32055],
# [ 1, 32070],
# [ 2, 39190],
# [ 2, 40255],
# [ 3, 40390],
# [ 3, 41455],
# [ 4, 45470],
# [ 5, 45325],
# [ 5, 46390]])
# Each row is a (gt index, prediction index)
# Note how gt items 1, 2, 3, and 5 each have two ties
pred_inds_to_update = gt_pred_pairs_of_highest_quality[1]
matches[pred_inds_to_update] = all_matches[pred_inds_to_update]
def smooth_l1_loss(input, target, beta: float = 1. / 9, size_average: bool = True):
"""
very similar to the smooth_l1_loss from pytorch, but with
the extra beta parameter
"""
Loading ...