import torch
from torch import Tensor
from torch.jit.annotations import List
def _cat(tensors: List[Tensor], dim: int = 0) -> Tensor:
"""
Efficient version of torch.cat that avoids a copy if there is only a single element in a list
"""
# TODO add back the assert
# assert isinstance(tensors, (list, tuple))
if len(tensors) == 1:
return tensors[0]
return torch.cat(tensors, dim)
def convert_boxes_to_roi_format(boxes: List[Tensor]) -> Tensor:
concat_boxes = _cat([b for b in boxes], dim=0)
temp = []
for i, b in enumerate(boxes):
temp.append(torch.full_like(b[:, :1], i))
ids = _cat(temp, dim=0)
rois = torch.cat([ids, concat_boxes], dim=1)
return rois
def check_roi_boxes_shape(boxes: Tensor):
if isinstance(boxes, (list, tuple)):
for _tensor in boxes:
assert _tensor.size(1) == 4, \
'The shape of the tensor in the boxes list is not correct as List[Tensor[L, 4]]'
elif isinstance(boxes, torch.Tensor):
assert boxes.size(1) == 5, 'The boxes tensor shape is not correct as Tensor[K, 5]'
else:
assert False, 'boxes is expected to be a Tensor[L, 5] or a List[Tensor[K, 4]]'
return