Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

edgify / torchvision   python

Repository URL to install this package:

Version: 0.8.2 

/ transforms / _transforms_video.py

#!/usr/bin/env python3

import numbers
import random

from torchvision.transforms import (
    RandomCrop,
    RandomResizedCrop,
)

from . import _functional_video as F


__all__ = [
    "RandomCropVideo",
    "RandomResizedCropVideo",
    "CenterCropVideo",
    "NormalizeVideo",
    "ToTensorVideo",
    "RandomHorizontalFlipVideo",
]


class RandomCropVideo(RandomCrop):
    def __init__(self, size):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size

    def __call__(self, clip):
        """
        Args:
            clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W)
        Returns:
            torch.tensor: randomly cropped/resized video clip.
                size is (C, T, OH, OW)
        """
        i, j, h, w = self.get_params(clip, self.size)
        return F.crop(clip, i, j, h, w)

    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)


class RandomResizedCropVideo(RandomResizedCrop):
    def __init__(
        self,
        size,
        scale=(0.08, 1.0),
        ratio=(3.0 / 4.0, 4.0 / 3.0),
        interpolation_mode="bilinear",
    ):
        if isinstance(size, tuple):
            assert len(size) == 2, "size should be tuple (height, width)"
            self.size = size
        else:
            self.size = (size, size)

        self.interpolation_mode = interpolation_mode
        self.scale = scale
        self.ratio = ratio

    def __call__(self, clip):
        """
        Args:
            clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W)
        Returns:
            torch.tensor: randomly cropped/resized video clip.
                size is (C, T, H, W)
        """
        i, j, h, w = self.get_params(clip, self.scale, self.ratio)
        return F.resized_crop(clip, i, j, h, w, self.size, self.interpolation_mode)

    def __repr__(self):
        return self.__class__.__name__ + \
            '(size={0}, interpolation_mode={1}, scale={2}, ratio={3})'.format(
                self.size, self.interpolation_mode, self.scale, self.ratio
            )


class CenterCropVideo(object):
    def __init__(self, crop_size):
        if isinstance(crop_size, numbers.Number):
            self.crop_size = (int(crop_size), int(crop_size))
        else:
            self.crop_size = crop_size

    def __call__(self, clip):
        """
        Args:
            clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W)
        Returns:
            torch.tensor: central cropping of video clip. Size is
            (C, T, crop_size, crop_size)
        """
        return F.center_crop(clip, self.crop_size)

    def __repr__(self):
        return self.__class__.__name__ + '(crop_size={0})'.format(self.crop_size)


class NormalizeVideo(object):
    """
    Normalize the video clip by mean subtraction and division by standard deviation
    Args:
        mean (3-tuple): pixel RGB mean
        std (3-tuple): pixel RGB standard deviation
        inplace (boolean): whether do in-place normalization
    """

    def __init__(self, mean, std, inplace=False):
        self.mean = mean
        self.std = std
        self.inplace = inplace

    def __call__(self, clip):
        """
        Args:
            clip (torch.tensor): video clip to be normalized. Size is (C, T, H, W)
        """
        return F.normalize(clip, self.mean, self.std, self.inplace)

    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1}, inplace={2})'.format(
            self.mean, self.std, self.inplace)


class ToTensorVideo(object):
    """
    Convert tensor data type from uint8 to float, divide value by 255.0 and
    permute the dimenions of clip tensor
    """

    def __init__(self):
        pass

    def __call__(self, clip):
        """
        Args:
            clip (torch.tensor, dtype=torch.uint8): Size is (T, H, W, C)
        Return:
            clip (torch.tensor, dtype=torch.float): Size is (C, T, H, W)
        """
        return F.to_tensor(clip)

    def __repr__(self):
        return self.__class__.__name__


class RandomHorizontalFlipVideo(object):
    """
    Flip the video clip along the horizonal direction with a given probability
    Args:
        p (float): probability of the clip being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
        self.p = p

    def __call__(self, clip):
        """
        Args:
            clip (torch.tensor): Size is (C, T, H, W)
        Return:
            clip (torch.tensor): Size is (C, T, H, W)
        """
        if random.random() < self.p:
            clip = F.hflip(clip)
        return clip

    def __repr__(self):
        return self.__class__.__name__ + "(p={0})".format(self.p)