Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

hemamaps / Django   python

Repository URL to install this package:

Version: 1.9.8 

/ contrib / gis / db / backends / oracle / adapter.py

from cx_Oracle import CLOB

from django.contrib.gis.db.backends.base.adapter import WKTAdapter
from django.contrib.gis.geos import GeometryCollection, Polygon
from django.utils.six.moves import range


class OracleSpatialAdapter(WKTAdapter):
    input_size = CLOB

    def __init__(self, geom):
        """
        Oracle requires that polygon rings are in proper orientation. This
        affects spatial operations and an invalid orientation may cause
        failures. Correct orientations are:
         * Outer ring - counter clockwise
         * Inner ring(s) - clockwise
        """
        if isinstance(geom, Polygon):
            self._fix_polygon(geom)
        elif isinstance(geom, GeometryCollection):
            self._fix_geometry_collection(geom)

        self.wkt = geom.wkt
        self.srid = geom.srid

    def _fix_polygon(self, poly):
        # Fix single polygon orientation as described in __init__()
        if self._isClockwise(poly.exterior_ring):
            poly.exterior_ring = list(reversed(poly.exterior_ring))

        for i in range(1, len(poly)):
            if not self._isClockwise(poly[i]):
                poly[i] = list(reversed(poly[i]))

        return poly

    def _fix_geometry_collection(self, coll):
        # Fix polygon orientations in geometry collections as described in
        # __init__()
        for i, geom in enumerate(coll):
            if isinstance(geom, Polygon):
                coll[i] = self._fix_polygon(geom)

    def _isClockwise(self, coords):
        # A modified shoelace algorithm to determine polygon orientation.
        # See https://en.wikipedia.org/wiki/Shoelace_formula
        n = len(coords)
        area = 0.0
        for i in range(n):
            j = (i + 1) % n
            area += coords[i][0] * coords[j][1]
            area -= coords[j][0] * coords[i][1]
        return area < 0.0