Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

neilisaac / torch   python

Repository URL to install this package:

Version: 1.8.0 

/ contrib / playground / AnyExp.py






from abc import abstractmethod

from caffe2.python import workspace
from caffe2.python import timeout_guard
from caffe2.python import data_parallel_model
from . import checkpoint as checkpoint

from . import ModuleRegister as ModuleRegister
from . import module_map as module_map

# instantiate logger outside of distributed operators may trigger error
# logger need to be created in each idividual operator instead.
import os
import inspect
import time
import logging
logging.basicConfig()
log = logging.getLogger("AnyExp")
log.setLevel(logging.DEBUG)


def initOpts(opts):

    workspace.GlobalInit(
        ['caffe2', '--caffe2_log_level=2', '--caffe2_gpu_memory_tracking=0'])

    assert (opts['distributed']['num_gpus'] > 0 or
            opts['distributed']['num_cpus'] > 0),\
        "Need to specify num_gpus or num_cpus to decide which device to use."

    trainWithCPU = (opts['distributed']['num_gpus'] == 0)
    num_xpus = opts['distributed']['num_cpus'] if \
        trainWithCPU else opts['distributed']['num_gpus']
    first_xpu = opts['distributed']['first_cpu_id'] if \
        trainWithCPU else opts['distributed']['first_gpu_id']
    opts['distributed']['device'] = 'cpu' if trainWithCPU else 'gpu'

    opts['model_param']['combine_spatial_bn'] =\
        trainWithCPU and opts['model_param']['combine_spatial_bn']

    opts['distributed']['num_xpus'] = num_xpus
    opts['distributed']['first_xpu_id'] = first_xpu
    opts['temp_var'] = {}
    opts['temp_var']['metrics_output'] = {}

    return opts


def initDefaultModuleMap():
    registerModuleMap(module_map)


def registerModuleMap(module_map):
    ModuleRegister.registerModuleMap(module_map)


def aquireDatasets(opts):
    myAquireDataModule = ModuleRegister.getModule(opts['input']['input_name_py'])
    return myAquireDataModule.get_input_dataset(opts)


def createTrainerClass(opts):
    return ModuleRegister.constructTrainerClass(AnyExpTrainer, opts)


def overrideAdditionalMethods(myTrainerClass, opts):
    return ModuleRegister.overrideAdditionalMethods(myTrainerClass, opts)


def initialize_params_from_file(*args, **kwargs):
    return checkpoint.initialize_params_from_file(*args, **kwargs)


class AnyExpTrainer(object):

    def __init__(self, opts):
        import logging
        logging.basicConfig()
        log = logging.getLogger("AnyExp")
        log.setLevel(logging.DEBUG)
        self.log = log

        self.opts = opts
        self.train_dataset = None
        self.test_dataset = None
        self.train_df = None
        self.test_df = None

        self.metrics = {}
        self.plotsIngredients = []

        self.record_epochs = []
        self.samples_per_sec = []
        self.secs_per_train = []

        self.metrics_output = opts['temp_var']['metrics_output']

        first_xpu = opts['distributed']['first_xpu_id']
        num_xpus = opts['distributed']['num_xpus']

        self.xpus = range(first_xpu, first_xpu + num_xpus)

        self.total_batch_size = \
            self.opts['epoch_iter']['batch_per_device'] * \
            self.opts['distributed']['num_xpus'] * \
            self.opts['distributed']['num_shards']
        self.epoch_iterations = \
            self.opts['epoch_iter']['num_train_sample_per_epoch'] // \
            self.total_batch_size

        if len(opts['input']['datasets']) > 0:
            self.train_df = opts['input']['datasets'][0]
            if len(opts['input']['datasets']) == 2:
                self.test_df = opts['input']['datasets'][1]
        # at this point, the intance of this class becomes many instances
        # running on different machines.  Most of their attributes are same,
        # but the shard_ids are different.
        self.shard_id = opts['temp_var']['shard_id']
        self.start_epoch = opts['temp_var']['start_epoch']
        self.epoch = opts['temp_var']['epoch']
        self.epochs_to_run = opts['epoch_iter']['num_epochs_per_flow_schedule']

        log.info('opts: {}'.format(str(opts)))

    @abstractmethod
    def get_input_dataset(self, opts):
        pass

    @abstractmethod
    def get_model_input_fun(self):
        pass

    @abstractmethod
    def init_model(self):
        pass

    def init_metrics(self):
        metrics = self.opts['output']['metrics']
        for metric in metrics:
            meterClass = self.getMeterClass(metric['meter_py'])
            # log.info('metric.meter_kargs {}'.format(metric.meter_kargs))
            # log.info('type meter_kargs {}'.format(type(metric.meter_kargs)))
            meterInstance = meterClass(opts=self.opts, **metric['meter_kargs'])
            self.add_metric(metric['name'], meterInstance, metric['is_train'])

    def getMeterClass(self, meterName):
        return ModuleRegister.getClassFromModule(meterName, meterName)

    def add_metric(self, name, calculator, is_train):
        metrics = self.metrics
        metrics[name] = {}
        metrics[name]['calculator'] = calculator
        metrics[name]['is_train'] = is_train
        metrics[name]['output'] = []

    def extendMetricsOutput(self):
        metrics_output = self.metrics_output
        if not metrics_output:
            metrics_output['epochs'] = self.record_epochs
            metrics_output['samples_per_sec'] = self.samples_per_sec
            metrics_output['secs_per_train'] = self.secs_per_train
            for metric, value in self.metrics.items():
                metrics_output[metric] = value['output']
        else:
            metrics_output['epochs'].extend(self.record_epochs)
            metrics_output['samples_per_sec'].extend(self.samples_per_sec)
            metrics_output['secs_per_train'].extend(self.secs_per_train)
            for metric, value in self.metrics.items():
                metrics_output[metric].extend(value['output'])

    @abstractmethod
    def init_plots(self):
        pass

    def add_plot(self, x, x_title, ys, y_title):
        plotsIngredients = self.plotsIngredients
        aPlotIngredients = {}
        aPlotIngredients['x'] = x
        aPlotIngredients['x_title'] = x_title
        aPlotIngredients['ys'] = ys
        aPlotIngredients['y_title'] = y_title
        plotsIngredients.append(aPlotIngredients)

    @abstractmethod
    def init_logs(self):
        pass

    def list_of_epochs(self):
        iter_end_point = min(self.opts['epoch_iter']['num_epochs'],
                             self.epoch +
                             self.opts['epoch_iter']['num_epochs_per_flow_schedule'])
        return range(self.epoch, iter_end_point)

    def list_of_epoch_iters(self):
        return range(0, self.epoch_iterations)

    @abstractmethod
    def fun_per_epoch_b4RunNet(self, epoch):
        pass

    @abstractmethod
    def fun_per_epoch_aftRunNet(self, epoch):
        pass

    def checkpoint(self, epoch):
        self.model_path = checkpoint.save_model_params(
            True, self.train_model, self.gen_checkpoint_path(True, epoch + 1),
            epoch + 1, self.opts, float('-inf'))

    def gen_checkpoint_path(self, is_checkpoint, epoch):
        if (is_checkpoint):
            filename = "model_checkpoint_epoch{}.pkl".format(epoch)
        else:
            filename = "model_final.pkl"
        return self.opts['output']['checkpoint_folder'] + filename

    # @abstractmethod
    # def gen_checkpoint_path(self, is_checkpoint, epoch):
    #     pass

    @abstractmethod
    def fun_per_iter_b4RunNet(self, epoch, epoch_iter):
        pass

    @abstractmethod
    def fun_per_iter_aftRunNetB4Test(self, epoch, epoch_iter):
        pass

    @abstractmethod
    def fun_per_iter_aftRunNetAftTest(self, epoch, epoch_iter):
        pass

    @abstractmethod
    def fun_conclude_operator(self, opts):
        pass

    def createMetricsPlotsModelsOutputs(self):
        self.extendMetricsOutput()
        self.model_output = self.model_path

    @abstractmethod
    def assembleAllOutputs(self):
        pass

    @abstractmethod
    def gen_input_builder_fun(self, model, dataset, is_train):
        pass

    @abstractmethod
    def gen_forward_pass_builder_fun(self, model, dataset, is_train):
        pass

    @abstractmethod
    def gen_param_update_builder_fun(self, model, dataset, is_train):
        pass

    @abstractmethod
    def gen_optimizer_fun(self, model, dataset, is_train):
        pass

    @abstractmethod
    def gen_rendezvous_ctx(self, model, dataset, is_train):
        pass

    @abstractmethod
    def run_training_net(self):
        pass

    @abstractmethod
    def run_testing_net(self):
        if self.test_model is None:
            return
        timeout = 2000.0
        with timeout_guard.CompleteInTimeOrDie(timeout):
            workspace.RunNet(self.test_model.net.Proto().name)

    # @abstractmethod
    def planning_output(self):
        self.init_metrics()
        self.init_plots()
        self.init_logs()

    def prep_data_parallel_models(self):
        self.prep_a_data_parallel_model(self.train_model,
                                        self.train_dataset, True)
        self.prep_a_data_parallel_model(self.test_model,
                                        self.test_dataset, False)

    def prep_a_data_parallel_model(self, model, dataset, is_train):
        if model is None:
            return

        log.info('in prep_a_data_parallel_model')

        param_update = \
            self.gen_param_update_builder_fun(model, dataset, is_train) \
            if self.gen_param_update_builder_fun is not None else None
        log.info('in prep_a_data_parallel_model param_update done ')

        optimizer = \
            self.gen_optimizer_fun(model, dataset, is_train) \
            if self.gen_optimizer_fun is not None else None
        log.info('in prep_a_data_parallel_model optimizer done ')

        max_ops = self.opts['model_param']['max_concurrent_distributed_ops']
        data_parallel_model.Parallelize(
            model,
            input_builder_fun=self.gen_input_builder_fun(model, dataset, is_train),
            forward_pass_builder_fun=self.gen_forward_pass_builder_fun(
                model, dataset, is_train),
            param_update_builder_fun=param_update,
            optimizer_builder_fun=optimizer,
            devices=self.xpus,
            rendezvous=self.gen_rendezvous_ctx(model, dataset, is_train),
            broadcast_computed_params=False,
            optimize_gradient_memory=self.opts['model_param']['memonger'],
            use_nccl=self.opts['model_param']['cuda_nccl'],
            max_concurrent_distributed_ops=max_ops,
            cpu_device=(self.opts['distributed']['device'] == 'cpu'),
            # "shared model" will only keep model parameters for cpu_0 or gpu_0
            # will cause issue when initialize each gpu_0, gpu_1, gpu_2 ...
            # shared_model=(self.opts['distributed']['device'] == 'cpu'),
            combine_spatial_bn=self.opts['model_param']['combine_spatial_bn'],
        )
        log.info('in prep_a_data_parallel_model Parallelize done ')

        # log.info("Current blobs in workspace: {}".format(workspace.Blobs()))

        workspace.RunNetOnce(model.param_init_net)
        log.info('in prep_a_data_parallel_model RunNetOnce done ')

        # for op in model.net.Proto().op:
        #     log.info('op type engine {} {}'.format(op.type, op.engine))

        log.info('model.net.Proto() {}'.format(model.net.Proto()))

        workspace.CreateNet(model.net)

        # for op in model.net.Proto().op:
        #     log.info('after CreateNet op type engine {} {}'.
Loading ...