import torch
from torch.autograd import Function
import torch.distributed as dist
def broadcast(tensor, src, group=dist.group.WORLD):
"""
Broadcasts the tensor to the whole group.
``tensor`` must have the same number of elements in all processes
participating in the collective.
Arguments:
tensor (Tensor): Data to be sent if ``src`` is the rank of current
process.
src (int): Source rank.
group (ProcessGroup, optional): The process group to work on.
Returns:
Tensor: Received tensor from the broadcast op.
"""
return _Broadcast.apply(src, group, tensor)
def gather(tensor, dst=0, group=dist.group.WORLD):
"""
Gathers a list of tensors in a single process.
Arguments:
tensor (Tensor): Input tensor.
dst (int, optional): Destination rank (default is 0).
group (ProcessGroup, optional): The process group to work on.
Returns:
tuple[Tensor]: List of appropriately-sized tensors with the gathered data.
"""
return _Gather.apply(dst, group, tensor)
def scatter(tensors, src=0, group=dist.group.WORLD):
"""
Scatters a list of tensors to all processes in a group.
Each process will receive exactly one tensor and store its data in the
``tensor`` argument.
Arguments:
tensors (list[Tensor]): List of tensors to scatter on the source rank.
Receivers must pass ``None`.
src (int, optional): Source rank (default is 0).
group (ProcessGroup, optional): The process group to work on.
Returns:
Tensor: Output tensor from the scatter operation.
"""
return _Scatter.apply(src, group, *tensors)
def reduce(tensor, dst, op=dist.ReduceOp.SUM, group=dist.group.WORLD):
"""
Reduces the tensor data across all machines.
Only the process with rank ``dst`` is going to receive the final result.
Arguments:
tensor (Tensor): Input of the collective.
dst (int): Destination rank.
op (optional): One of the values from
``torch.distributed.ReduceOp``
enum. Specifies an operation used for element-wise reductions.
group (ProcessGroup, optional): The process group to work on.
Returns:
Tensor: Output of the collective.
"""
return _Reduce.apply(dst, op, group, tensor)
def all_gather(tensor, group=dist.group.WORLD):
"""
Gathers tensors from the whole group in a list.
Arguments:
tensor (Tensor): Tensor to be broadcast from current process.
group (ProcessGroup, optional): The process group to work on.
Returns:
tuple[Tensor]): Output of the collective.
"""
return _AllGather.apply(group, tensor)
def all_to_all(tensors, group=dist.group.WORLD):
"""
Each process scatters list of input tensors to all processes in a group and
return gathered list of tensors in output list.
Arguments:
tensors (list[Tensor]): List of tensors to scatter one per rank.
group (ProcessGroup, optional): The process group to work on.
Returns:
tuple[Tensor]): Output of the collective.
"""
return _AlltoAll.apply(group, *tensors)
def all_reduce(tensor, op=dist.ReduceOp.SUM, group=dist.group.WORLD):
"""
Reduces the tensor data across all machines in such a way that all get
the final result.
After the call the returned tensor is going to be bitwise
identical in all processes.
Arguments:
tensor (Tensor): Input of the collective.
op (optional): One of the values from
``torch.distributed.ReduceOp``
enum. Specifies an operation used for element-wise reductions.
group (ProcessGroup, optional): The process group to work on.
Returns:
Tensor: Output of the collective
"""
return _AllReduce.apply(op, group, tensor)
class _Broadcast(Function):
@staticmethod
def forward(ctx, src, group, tensor):
ctx.src = src
ctx.group = group
ctx.rank = dist.get_rank()
# torch.distributed makes all the calls in place
# we allocate new tensors to avoid this
tensor = tensor.clone()
dist.broadcast(tensor, src, group=group)
return tensor
@staticmethod
def backward(ctx, grad_output):
gx = _Reduce.apply(ctx.src, dist.ReduceOp.SUM, ctx.group, grad_output)
if ctx.src != ctx.rank:
gx.zero_()
return (None, None, gx)
class _Gather(Function):
@staticmethod
def forward(ctx, dst, group, tensor):
ctx.dst = dst
ctx.group = group
# Need to create a list of tensors here to do the
# aggregation, get it from the group size
# tensor should be correctly sized for the method
# gathering
tensor_list = [
torch.zeros_like(tensor) for i in range(dist.get_world_size(group=group))
]
if dist.get_rank(group=group) == dst:
dist.gather(tensor, tensor_list, dst, group=group)
else:
dist.gather(tensor, None, dst, group=group)
return tuple(tensor_list)
@staticmethod
def backward(ctx, *grad_outputs):
return (None, None) + (_Scatter.apply(ctx.dst, ctx.group, *grad_outputs),)
class _Scatter(Function):
@staticmethod
def forward(ctx, src, group, *tensors):
ctx.src = src
ctx.group = group
assert all(t.size() == tensors[0].size() for t in tensors)
output = torch.zeros_like(tensors[0])
if dist.get_rank(group=group) == src:
dist.scatter(output, list(tensors), src, group=group)
else:
dist.scatter(output, None, src, group=group)
return output
@staticmethod
def backward(ctx, grad_output):
return (None, None) + _Gather.apply(ctx.src, ctx.group, grad_output)
class _Reduce(Function):
@staticmethod
def forward(ctx, src, op, group, tensor):
ctx.src = src
ctx.group = group
tensor = tensor.clone()
dist.reduce(tensor, src, op=op, group=group)
return tensor
@staticmethod
def backward(ctx, grad_output):
return (None, None, None) + (_Broadcast.apply(ctx.src, ctx.group, grad_output),)
class _AllGather(Function):
@staticmethod
def forward(ctx, group, tensor):
ctx.group = group
out_tensor_list = [
torch.empty_like(tensor) for i in range(dist.get_world_size(group=group))
]
dist.all_gather(out_tensor_list, tensor, group=group)
return tuple(out_tensor_list)
@staticmethod
def backward(ctx, *grad_outputs):
gxs = _AlltoAll.apply(ctx.group, *grad_outputs)
gx = torch.sum(torch.stack(gxs), dim=0)
return (None, gx)
class _AlltoAll(Function):
@staticmethod
def forward(ctx, group, *tensors):
ctx.group = group
out_tensor_list = [
torch.empty_like(tensors[i]) for i in range(dist.get_world_size(group=group))
]
reqs = [None] * dist.get_world_size(group=group)
my_rank = dist.get_rank(group=group)
# Implement it on means of scatter/gather, send/recv async operations have issues
if dist.get_backend(group=group) is dist.Backend.GLOO:
for i in range(dist.get_world_size(group=group)):
to_send = None
if i == my_rank:
to_send = list(tensors)
dist.scatter(out_tensor_list[i], to_send, i, group=group)
else:
dist.all_to_all(out_tensor_list, list(tensors), group=group)
return tuple(out_tensor_list)
@staticmethod
def backward(ctx, *grad_outputs):
return (None,) + _AlltoAll.apply(ctx.group, *grad_outputs)
class _AllReduce(Function):
@staticmethod
def forward(ctx, op, group, tensor):
ctx.group = group
ctx.op = op
tensor = tensor.clone()
dist.all_reduce(tensor, op=op, group=group)
return tensor
@staticmethod
def backward(ctx, grad_output):
return (None, None) + (_AllReduce.apply(ctx.op, ctx.group, grad_output),)