Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

neilisaac / torch   python

Repository URL to install this package:

/ distributed / pipeline / sync / pipe.py

# Copyright 2019 Kakao Brain
#
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
"""The Pipe interface."""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Iterable, List, Optional, Tuple, Union, cast, Sequence

import torch
from torch import Tensor, nn
from torch.distributed.rpc import RRef
import torch.autograd
import torch.cuda

from . import microbatch
from .batchnorm import DeferredBatchNorm
from .pipeline import Pipeline
from .skip.layout import inspect_skip_layout
from .skip.skippable import verify_skippables
from .stream import AbstractStream, new_stream

__all__ = ["Pipe"]


Device = Union[torch.device, int, str]
Devices = Union[Iterable[Device], List[Device]]

Tensors = Sequence[Tensor]
TensorOrTensors = Union[Tensor, Tensors]

if TYPE_CHECKING:
    # Typechecking: nn.Module is not a Generic
    Module = nn.Module[TensorOrTensors]  # type: ignore[type-arg]
    NamedModules = OrderedDict[str, Module]
else:
    Module = nn.Module
    NamedModules = OrderedDict


def _recommend_auto_balance(message: str) -> str:
    """Expands a message with recommendation to :mod:`torchpipe.balance`."""
    return f"""{message}

If your model is still under development, its optimal balance would change
frequently. In this case, we highly recommend 'torch.distributed.pipeline.sync.balance' for
naive automatic balancing:

  from torch.distributed.pipeline.sync import Pipe
  from torch.distributed.pipeline.sync.balance import balance_by_time

  partitions = torch.cuda.device_count()
  sample = torch.empty(...)
  balance = balance_by_time(partitions, model, sample)

  model = Pipe(model, balance, ...)
"""


def _verify_module(module: nn.Sequential) -> None:
    if not isinstance(module, nn.Sequential):
        raise TypeError("module must be nn.Sequential to be partitioned")

    named_children = list(module.named_children())
    if len(named_children) != len(module):
        raise ValueError("module with duplicate children is not supported")


def _verify_splitting(
    module: nn.Sequential, partitions: List[nn.Sequential], devices: List[torch.device]
) -> None:
    num_parameters = len(list(module.parameters()))
    num_child_parameters = sum(len(list(child.parameters())) for child in module.children())
    if num_parameters == num_child_parameters:
        return

    for i in range(len(partitions)):
        for j in range(i + 1, len(partitions)):
            parti = partitions[i]
            partj = partitions[j]
            if devices[i] == devices[j]:
                continue
            for p in parti.parameters():
                for q in partj.parameters():
                    if p is q:
                        raise ValueError("module with duplicate parameters on distinct devices is not supported")


class BalanceError(ValueError):
    pass


def _retrieve_device(module: nn.Module) -> torch.device:
    """Validates all parameters in the Module have the same device and returns
    the appropriate device.

    Args:
        An ``nn.Module`` to process.

    Returns:
        ``torch.Device`` for the entire module.

    Raises:
        ValueError:
            If devices for ``nn.Module`` parameters are not all same.
    """

    device = None
    for parameter in module.parameters():
        if device is None:
            device = parameter.device
        elif device != parameter.device:
            raise ValueError(
                'nn.Module: {}, should have all parameters on a single device,'
                ' please use .to() to place the module on a single device'.format(module))

    return device if device is not None else torch.device("cpu")

def _split_module(modules: nn.Sequential) -> Tuple[List[nn.Sequential], List[torch.device]]:
    partitions = []
    devices = []
    for name, module in modules.named_children():
        devices.append(_retrieve_device(module))
        if isinstance(module, nn.Sequential):
            partition = module
        else:
            partition = nn.Sequential(OrderedDict([(name, module)]))
        partitions.append(partition)

    partitions = cast(List[nn.Sequential], nn.ModuleList(partitions))

    return partitions, devices

MOVING_DENIED = TypeError("denied to move parameters and buffers, " "because Pipe should manage device placement")


class Pipe(Module):
    """Wraps an arbitrary :class:`nn.Sequential <torch.nn.Sequential>` module
    to train on using synchronous pipeline parallelism. If the module requires
    lots of memory and doesn't fit on a single GPU, pipeline parallelism is a
    useful technique to employ for training.

    The implementation is based on the torchgpipe_ paper.

    .. _torchgpipe: https://arxiv.org/abs/2004.09910

    Pipe combines pipeline parallelism with checkpointing to reduce peak
    memory required to train while minimizing device under-utilization.

    You should place all the modules on the appropriate devices and wrap them
    into an :class:`nn.Sequential <torch.nn.Sequential>` module defining the
    desired order of execution.

    Args:
        module (:class:`nn.Sequential <torch.nn.Sequential>`):
            sequential module to be parallelized using pipelining. Each module
            in the sequence has to have all of its parameters on a single
            device. Each module in the sequence has to either be an nn.Module
            or :class:`nn.Sequential <torch.nn.Sequential>` (to combine multiple
            sequential modules on a single device)
        chunks (int):
            number of micro-batches (default: ``1``)
        checkpoint (str):
            when to enable checkpointing, one of ``'always'``,
            ``'except_last'``, or ``'never'`` (default: ``'except_last'``).
            ``'never'`` disables checkpointing completely, ``'except_last'``
            enables checkpointing for all micro-batches except the last one
            and ``'always'`` enables checkpointing for all micro-batches.
        deferred_batch_norm (bool):
            whether to use deferred ``BatchNorm`` moving statistics (default:
            :data:`False`). If set to :data:`True`, we track statistics across
            multiple micro-batches to update the running statistics per
            mini-batch.

    Raises:
        TypeError:
            the module is not a :class:`nn.Sequential <torch.nn.Sequential>`.
        ValueError:
            invalid arguments

    Example::
        Pipeline of two FC layers across GPUs 0 and 1.

        >>> fc1 = nn.Linear(16, 8).cuda(0)
        >>> fc2 = nn.Linear(8, 4).cuda(1)
        >>> model = nn.Sequential(fc1, fc2)
        >>> model = Pipe(model, chunks=8)
        >>> input = torch.rand(16, 16).cuda(0)
        >>> output_rref = model(input)

    .. note::
        You can wrap a :class:`Pipe` model with
        :class:`torch.nn.parallel.DistributedDataParallel` only when the
        checkpoint parameter of :class:`Pipe` is ``'never'``.

    .. note::
        :class:`Pipe` only supports intra-node pipelining currently, but
        will be expanded to support inter-node pipelining in the future.
        The forward function returns an :class:`~torch.distributed.rpc.RRef`
        to allow for inter-node pipelining in the future, where the output
        might be on a remote host. For intra-node pipelinining you can use
        :meth:`~torch.distributed.rpc.RRef.local_value` to retrieve the
        output locally.

    .. warning::
        :class:`Pipe` is experimental and subject to change.
    """

    def __init__(
        self,
        module: nn.Sequential,
        chunks: int = 1,
        checkpoint: str = "except_last",
        deferred_batch_norm: bool = False,
    ) -> None:
        super().__init__()

        chunks = int(chunks)
        checkpoint = str(checkpoint)

        if chunks <= 0:
            raise ValueError("number of chunks must be positive integer")
        if checkpoint not in ["always", "except_last", "never"]:
            raise ValueError("checkpoint is not one of 'always', 'except_last', or 'never'")

        _verify_module(module)

        # Verify if the underlying skippable modules satisfy integrity. The
        # integrity can be verified before forward() because it is static.
        verify_skippables(module)

        self.chunks = chunks
        self.checkpoint = checkpoint

        if deferred_batch_norm:
            module = DeferredBatchNorm.convert_deferred_batch_norm(module, chunks)

        self.partitions, self.devices = _split_module(module)
        _verify_splitting(module, self.partitions, self.devices)

        self._copy_streams: List[List[AbstractStream]] = []
        self._skip_layout = inspect_skip_layout(self.partitions)

        # Separate CUDA streams for copy.
        copy_streams = self._ensure_copy_streams()

        # The micro-batch index where the checkpointing stops.
        checkpoint_stop = {"always": self.chunks, "except_last": self.chunks - 1, "never": 0}[self.checkpoint]

        self.pipeline = Pipeline(self.partitions, self.devices, copy_streams, self._skip_layout, checkpoint_stop)

    def __len__(self) -> int:
        """Counts the length of the underlying sequential module."""
        return sum(len(p) for p in self.partitions)

    def __getitem__(self, index: int) -> nn.Module:
        """Gets a layer in the underlying sequential module."""
        partitions = self.partitions
        if index < 0:
            partitions = partitions[::-1]

        for partition in partitions:
            try:
                return partition[index]
            except IndexError:
                pass

            shift = len(partition)

            if index < 0:
                index += shift
            else:
                index -= shift

        raise IndexError

    def __iter__(self) -> Iterable[nn.Module]:
        """Iterates over children of the underlying sequential module."""
        for partition in self.partitions:
            yield from partition

    # Pipe should manage the device of each partition.
    # Deny cuda(), cpu(), and to() with device, by TypeError.
    def cuda(self, device: Optional[Device] = None) -> "Pipe":
        raise MOVING_DENIED

    def cpu(self) -> "Pipe":
        raise MOVING_DENIED

    def to(self, *args: Any, **kwargs: Any) -> "Pipe":
        # Deny these usages:
        #
        # - to(device[, dtype, non_blocking])
        # - to(tensor[, non_blocking])
        #
        # But allow this:
        #
        # - to(dtype[, non_blocking])
        #
        if "device" in kwargs or "tensor" in kwargs:
            raise MOVING_DENIED

        if args:
            if isinstance(args[0], (torch.device, int, str)):
                raise MOVING_DENIED
            if torch.is_tensor(args[0]):
                raise MOVING_DENIED

        return super().to(*args, **kwargs)

    def _ensure_copy_streams(self) -> List[List[AbstractStream]]:
        """Ensures that :class:`Pipe` caches CUDA streams for copy.

        It's worth to cache CUDA streams although PyTorch already manages a
        pool of pre-allocated CUDA streams, because it may reduce GPU memory
        fragementation when the number of micro-batches is small.

        """
        if not self._copy_streams:
            for device in self.devices:
                self._copy_streams.append([new_stream(device) for _ in range(self.chunks)])

        return self._copy_streams

    def forward(self, input) -> RRef:  # type: ignore
        """
        Processes a single input mini-batch through the pipe and returns an
        :class:`~torch.distributed.rpc.RRef` pointing to the output.
        :class:`Pipe` is a fairly transparent module wrapper. It doesn't
        modify the input and output signature of the underlying module. But
        there's type restriction. Input and output have to be a
        :class:`~torch.Tensor` or a sequence of tensors. This restriction is
        applied at partition boundaries too.

        The input tensor is split into multiple micro-batches based on the
        ``chunks`` parameter used to initialize :class:`Pipe`. The batch size
        is assumed to be the first dimension of the tensor and if the batch
        size is less than ``chunks``, the number of micro-batches is equal to
        the batch size.

        Args:
            input (torch.Tensor or sequence of :class:`~torch.Tensor`): input mini-batch

        Returns:
Loading ...