import sys
import torch
from torch._C import _add_docstr, _fft # type: ignore
from torch._torch_docs import factory_common_args
__all__ = ['fft', 'ifft', 'fft2', 'ifft2', 'fftn', 'ifftn',
'rfft', 'irfft', 'rfft2', 'irfft2', 'rfftn', 'irfftn',
'hfft', 'ihfft', 'fftfreq', 'rfftfreq', 'fftshift', 'ifftshift',
'Tensor']
Tensor = torch.Tensor
# Note: This not only adds the doc strings for the spectral ops, but
# connects the torch.fft Python namespace to the torch._C._fft builtins.
fft = _add_docstr(_fft.fft_fft, r"""
fft(input, n=None, dim=-1, norm=None) -> Tensor
Computes the one dimensional discrete Fourier transform of :attr:`input`.
Note:
The Fourier domain representation of any real signal satisfies the
Hermitian property: `X[i] = conj(X[-i])`. This function always returns both
the positive and negative frequency terms even though, for real inputs, the
negative frequencies are redundant. :func:`~torch.fft.rfft` returns the
more compact one-sided representation where only the positive frequencies
are returned.
Args:
input (Tensor): the input tensor
n (int, optional): Signal length. If given, the input will either be zero-padded
or trimmed to this length before computing the FFT.
dim (int, optional): The dimension along which to take the one dimensional FFT.
norm (str, optional): Normalization mode. For the forward transform
(:func:`~torch.fft.fft`), these correspond to:
* ``"forward"`` - normalize by ``1/n``
* ``"backward"`` - no normalization
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the FFT orthonormal)
Calling the backward transform (:func:`~torch.fft.ifft`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.ifft`
the exact inverse.
Default is ``"backward"`` (no normalization).
Example:
>>> t = torch.arange(4)
>>> t
tensor([0, 1, 2, 3])
>>> torch.fft.fft(t)
tensor([ 6.+0.j, -2.+2.j, -2.+0.j, -2.-2.j])
>>> t = tensor([0.+1.j, 2.+3.j, 4.+5.j, 6.+7.j])
>>> torch.fft.fft(t)
tensor([12.+16.j, -8.+0.j, -4.-4.j, 0.-8.j])
""")
ifft = _add_docstr(_fft.fft_ifft, r"""
ifft(input, n=None, dim=-1, norm=None) -> Tensor
Computes the one dimensional inverse discrete Fourier transform of :attr:`input`.
Args:
input (Tensor): the input tensor
n (int, optional): Signal length. If given, the input will either be zero-padded
or trimmed to this length before computing the IFFT.
dim (int, optional): The dimension along which to take the one dimensional IFFT.
norm (str, optional): Normalization mode. For the backward transform
(:func:`~torch.fft.ifft`), these correspond to:
* ``"forward"`` - no normalization
* ``"backward"`` - normalize by ``1/n``
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the IFFT orthonormal)
Calling the forward transform (:func:`~torch.fft.fft`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.ifft`
the exact inverse.
Default is ``"backward"`` (normalize by ``1/n``).
Example:
>>> t = torch.tensor([ 6.+0.j, -2.+2.j, -2.+0.j, -2.-2.j])
>>> torch.fft.ifft(t)
tensor([0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j])
""")
fft2 = _add_docstr(_fft.fft_fft2, r"""
fft2(input, s=None, dim=(-2, -1), norm=None) -> Tensor
Computes the 2 dimensional discrete Fourier transform of :attr:`input`.
Equivalent to :func:`~torch.fft.fftn` but FFTs only the last two dimensions by default.
Note:
The Fourier domain representation of any real signal satisfies the
Hermitian property: ``X[i, j] = conj(X[-i, -j])``. This
function always returns all positive and negative frequency terms even
though, for real inputs, half of these values are redundant.
:func:`~torch.fft.rfft2` returns the more compact one-sided representation
where only the positive frequencies of the last dimension are returned.
Args:
input (Tensor): the input tensor
s (Tuple[int], optional): Signal size in the transformed dimensions.
If given, each dimension ``dim[i]`` will either be zero-padded or
trimmed to the length ``s[i]`` before computing the FFT.
If a length ``-1`` is specified, no padding is done in that dimension.
Default: ``s = [input.size(d) for d in dim]``
dim (Tuple[int], optional): Dimensions to be transformed.
Default: last two dimensions.
norm (str, optional): Normalization mode. For the forward transform
(:func:`~torch.fft.fft2`), these correspond to:
* ``"forward"`` - normalize by ``1/n``
* ``"backward"`` - no normalization
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the FFT orthonormal)
Where ``n = prod(s)`` is the logical FFT size.
Calling the backward transform (:func:`~torch.fft.ifft2`) with the same
normalization mode will apply an overall normalization of ``1/n``
between the two transforms. This is required to make
:func:`~torch.fft.ifft2` the exact inverse.
Default is ``"backward"`` (no normalization).
Example:
>>> x = torch.rand(10, 10, dtype=torch.complex64)
>>> fft2 = torch.fft.fft2(t)
The discrete Fourier transform is separable, so :func:`~torch.fft.fft2`
here is equivalent to two one-dimensional :func:`~torch.fft.fft` calls:
>>> two_ffts = torch.fft.fft(torch.fft.fft(x, dim=0), dim=1)
>>> torch.allclose(fft2, two_ffts)
""")
ifft2 = _add_docstr(_fft.fft_ifft2, r"""
ifft2(input, s=None, dim=(-2, -1), norm=None) -> Tensor
Computes the 2 dimensional inverse discrete Fourier transform of :attr:`input`.
Equivalent to :func:`~torch.fft.ifftn` but IFFTs only the last two dimensions by default.
Args:
input (Tensor): the input tensor
s (Tuple[int], optional): Signal size in the transformed dimensions.
If given, each dimension ``dim[i]`` will either be zero-padded or
trimmed to the length ``s[i]`` before computing the IFFT.
If a length ``-1`` is specified, no padding is done in that dimension.
Default: ``s = [input.size(d) for d in dim]``
dim (Tuple[int], optional): Dimensions to be transformed.
Default: last two dimensions.
norm (str, optional): Normalization mode. For the backward transform
(:func:`~torch.fft.ifft2`), these correspond to:
* ``"forward"`` - no normalization
* ``"backward"`` - normalize by ``1/n``
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the IFFT orthonormal)
Where ``n = prod(s)`` is the logical IFFT size.
Calling the forward transform (:func:`~torch.fft.fft2`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.ifft2`
the exact inverse.
Default is ``"backward"`` (normalize by ``1/n``).
Example:
>>> x = torch.rand(10, 10, dtype=torch.complex64)
>>> ifft2 = torch.fft.ifft2(t)
The discrete Fourier transform is separable, so :func:`~torch.fft.ifft2`
here is equivalent to two one-dimensional :func:`~torch.fft.ifft` calls:
>>> two_iffts = torch.fft.ifft(torch.fft.ifft(x, dim=0), dim=1)
>>> torch.allclose(ifft2, two_iffts)
""")
fftn = _add_docstr(_fft.fft_fftn, r"""
fftn(input, s=None, dim=None, norm=None) -> Tensor
Computes the N dimensional discrete Fourier transform of :attr:`input`.
Note:
The Fourier domain representation of any real signal satisfies the
Hermitian property: ``X[i_1, ..., i_n] = conj(X[-i_1, ..., -i_n])``. This
function always returns all positive and negative frequency terms even
though, for real inputs, half of these values are redundant.
:func:`~torch.fft.rfftn` returns the more compact one-sided representation
where only the positive frequencies of the last dimension are returned.
Args:
input (Tensor): the input tensor
s (Tuple[int], optional): Signal size in the transformed dimensions.
If given, each dimension ``dim[i]`` will either be zero-padded or
trimmed to the length ``s[i]`` before computing the FFT.
If a length ``-1`` is specified, no padding is done in that dimension.
Default: ``s = [input.size(d) for d in dim]``
dim (Tuple[int], optional): Dimensions to be transformed.
Default: all dimensions, or the last ``len(s)`` dimensions if :attr:`s` is given.
norm (str, optional): Normalization mode. For the forward transform
(:func:`~torch.fft.fftn`), these correspond to:
* ``"forward"`` - normalize by ``1/n``
* ``"backward"`` - no normalization
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the FFT orthonormal)
Where ``n = prod(s)`` is the logical FFT size.
Calling the backward transform (:func:`~torch.fft.ifftn`) with the same
normalization mode will apply an overall normalization of ``1/n``
between the two transforms. This is required to make
:func:`~torch.fft.ifftn` the exact inverse.
Default is ``"backward"`` (no normalization).
Example:
>>> x = torch.rand(10, 10, dtype=torch.complex64)
>>> fftn = torch.fft.fftn(t)
The discrete Fourier transform is separable, so :func:`~torch.fft.fftn`
here is equivalent to two one-dimensional :func:`~torch.fft.fft` calls:
>>> two_ffts = torch.fft.fft(torch.fft.fft(x, dim=0), dim=1)
>>> torch.allclose(fftn, two_ffts)
""")
ifftn = _add_docstr(_fft.fft_ifftn, r"""
ifftn(input, s=None, dim=None, norm=None) -> Tensor
Computes the N dimensional inverse discrete Fourier transform of :attr:`input`.
Args:
input (Tensor): the input tensor
s (Tuple[int], optional): Signal size in the transformed dimensions.
If given, each dimension ``dim[i]`` will either be zero-padded or
trimmed to the length ``s[i]`` before computing the IFFT.
If a length ``-1`` is specified, no padding is done in that dimension.
Default: ``s = [input.size(d) for d in dim]``
dim (Tuple[int], optional): Dimensions to be transformed.
Default: all dimensions, or the last ``len(s)`` dimensions if :attr:`s` is given.
norm (str, optional): Normalization mode. For the backward transform
(:func:`~torch.fft.ifftn`), these correspond to:
* ``"forward"`` - no normalization
* ``"backward"`` - normalize by ``1/n``
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the IFFT orthonormal)
Where ``n = prod(s)`` is the logical IFFT size.
Calling the forward transform (:func:`~torch.fft.fftn`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.ifftn`
the exact inverse.
Default is ``"backward"`` (normalize by ``1/n``).
Example:
>>> x = torch.rand(10, 10, dtype=torch.complex64)
>>> ifftn = torch.fft.ifftn(t)
The discrete Fourier transform is separable, so :func:`~torch.fft.ifftn`
here is equivalent to two one-dimensional :func:`~torch.fft.ifft` calls:
>>> two_iffts = torch.fft.ifft(torch.fft.ifft(x, dim=0), dim=1)
>>> torch.allclose(ifftn, two_iffts)
""")
rfft = _add_docstr(_fft.fft_rfft, r"""
rfft(input, n=None, dim=-1, norm=None) -> Tensor
Computes the one dimensional Fourier transform of real-valued :attr:`input`.
The FFT of a real signal is Hermitian-symmetric, ``X[i] = conj(X[-i])`` so
the output contains only the positive frequencies below the Nyquist frequency.
To compute the full output, use :func:`~torch.fft.fft`
Args:
input (Tensor): the real input tensor
n (int, optional): Signal length. If given, the input will either be zero-padded
or trimmed to this length before computing the real FFT.
dim (int, optional): The dimension along which to take the one dimensional real FFT.
norm (str, optional): Normalization mode. For the forward transform
(:func:`~torch.fft.rfft`), these correspond to:
* ``"forward"`` - normalize by ``1/n``
* ``"backward"`` - no normalization
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the FFT orthonormal)
Calling the backward transform (:func:`~torch.fft.irfft`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.irfft`
the exact inverse.
Default is ``"backward"`` (no normalization).
Example:
>>> t = torch.arange(4)
>>> t
tensor([0, 1, 2, 3])
>>> torch.fft.rfft(t)
tensor([ 6.+0.j, -2.+2.j, -2.+0.j])
Compare against the full output from :func:`~torch.fft.fft`:
>>> torch.fft.fft(t)
tensor([ 6.+0.j, -2.+2.j, -2.+0.j, -2.-2.j])
Notice that the symmetric element ``T[-1] == T[1].conj()`` is omitted.
At the Nyquist frequency ``T[-2] == T[2]`` is it's own symmetric pair,
and therefore must always be real-valued.
""")
irfft = _add_docstr(_fft.fft_irfft, r"""
irfft(input, n=None, dim=-1, norm=None) -> Tensor
Computes the inverse of :func:`~torch.fft.rfft`.
:attr:`input` is interpreted as a one-sided Hermitian signal in the Fourier
domain, as produced by :func:`~torch.fft.rfft`. By the Hermitian property, the
output will be real-valued.
Note:
Some input frequencies must be real-valued to satisfy the Hermitian
property. In these cases the imaginary component will be ignored.
For example, any imaginary component in the zero-frequency term cannot
be represented in a real output and so will always be ignored.
Note:
The correct interpretation of the Hermitian input depends on the length of
the original data, as given by :attr:`n`. This is because each input shape
could correspond to either an odd or even length signal. By default, the
Loading ...