from .node import Node, Argument, Target, map_arg
from typing import Callable, Any, List, Dict, Optional, Tuple, Set
import builtins
import torch
import types
import keyword
import re
def _shadows_builtin_name(name: str) -> bool:
return name in builtins.__dict__ or name in keyword.kwlist or name in {'inf', 'nan', 'NoneType'}
def _is_magic(x: str) -> bool:
return x.startswith('__') and x.endswith('__')
def _snake_case(s: str) -> str:
"""
Transforms the given string ``s`` to a Python-style variable name
Examples:
``mod.snake_case`` -> ``mod.snake_case``
``mod.pascalCase``-> ``mod.pascal_case``
``mod.ALL_CAPS`` -> ``mod.all_caps``
"""
chars = []
prev_lower = False
for c in s:
if prev_lower and c.isupper():
chars.append('_')
chars.append(c.lower())
prev_lower = c.islower()
return ''.join(chars)
def get_qualified_name(func: Callable[..., Any]) -> str:
# things like getattr just appear in builtins
if getattr(builtins, func.__name__, None) is func:
return func.__name__
name = func.__name__
module = _find_module_of_method(func)
module = module.replace('torch._ops', 'torch.ops') # WAR for bug in how torch.ops assigns module
return f'{module}.{name}'
# this is fixed on master, WAR for 1.5
def _find_module_of_method(orig_method: Callable[..., Any]) -> str:
name = orig_method.__name__
module = orig_method.__module__
if module is not None:
return module
for guess in [torch, torch.nn.functional]:
if getattr(guess, name, None) is orig_method:
return guess.__name__
raise RuntimeError(f'cannot find module for {orig_method}')
def _format_args(args: Tuple[Argument, ...], kwargs: Dict[str, Argument]) -> str:
args_s = ', '.join(repr(a) for a in args)
kwargs_s = ', '.join(f'{k} = {repr(v)}' for k, v in kwargs.items())
if args_s and kwargs_s:
return f'{args_s}, {kwargs_s}'
return args_s or kwargs_s
def _format_target(base: str, target: str) -> str:
elems = target.split('.')
r = base
for e in elems:
if not e.isidentifier():
r = f'getattr({r}, "{e}")'
else:
r = f'{r}.{e}'
return r
# Borrowed from CPython typing module
# https://github.com/python/cpython/blob/f90dc36c15d7fee0efaf6d39e97be0bdf2683e93/Lib/typing.py#L156
def _type_repr(obj):
"""Return the repr() of an object, special-casing types (internal helper).
If obj is a type, we return a shorter version than the default
type.__repr__, based on the module and qualified name, which is
typically enough to uniquely identify a type. For everything
else, we fall back on repr(obj).
"""
# HACK: In Python 3.6, type aliases from ``typing`` are instances of ``type``, but in
# later Python versions, type aliases are not instances of ``type``!! We want
# all type aliases to fall through to ``repr``, so if we have a type that is
# in the module typing, don't go down this path.
if isinstance(obj, type) and obj.__module__ != 'typing':
if obj.__module__ == 'builtins':
return obj.__qualname__
return f'{obj.__module__}.{obj.__qualname__}'
if obj is ...:
return('...')
if isinstance(obj, types.FunctionType):
return obj.__name__
return repr(obj)
class _InsertPoint:
def __init__(self, graph, new_insert):
self.graph = graph
self.orig_insert, graph._insert = graph._insert, new_insert
def __enter__(self):
pass
def __exit__(self, type, value, tb):
self.graph._insert = self.orig_insert
class _node_list:
def __init__(self, graph: 'Graph', direction: str = '_next'):
assert direction in ['_next', '_prev']
self.graph = graph
self.direction = direction
def __len__(self):
return self.graph._len
def __iter__(self):
root, direction = self.graph._root, self.direction
cur = getattr(root, direction)
while cur is not root:
if not cur._erased:
yield cur
cur = getattr(cur, direction)
def __reversed__(self):
return _node_list(self.graph, '_next' if self.direction == '_prev' else '_prev')
class Graph:
"""
``Graph`` is the main data structure used in the FX Intermediate Representation.
It consists of a series of ``Node`` s, each representing callsites (or other
syntactic constructs). The list of ``Node`` s, taken together, constitute a
valid Python function.
For example, the following code
.. code-block:: python
import torch
import torch.fx
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.param = torch.nn.Parameter(torch.rand(3, 4))
self.linear = torch.nn.Linear(4, 5)
def forward(self, x):
return torch.topk(torch.sum(self.linear(x + self.linear.weight).relu(), dim=-1), 3)
m = MyModule()
gm = torch.fx.symbolic_trace(m)
Will produce the following Graph::
print(gm.graph)
.. code-block:: text
graph(x):
%linear_weight : [#users=1] = self.linear.weight
%add_1 : [#users=1] = call_function[target=operator.add](args = (%x, %linear_weight), kwargs = {})
%linear_1 : [#users=1] = call_module[target=linear](args = (%add_1,), kwargs = {})
%relu_1 : [#users=1] = call_method[target=relu](args = (%linear_1,), kwargs = {})
%sum_1 : [#users=1] = call_function[target=torch.sum](args = (%relu_1,), kwargs = {dim: -1})
%topk_1 : [#users=1] = call_function[target=torch.topk](args = (%sum_1, 3), kwargs = {})
return topk_1
For the semantics of operations represented in the ``Graph``, please see :class:`Node`.
"""
def __init__(self):
"""
Construct an empty Graph.
"""
self._root : Node = Node(self, '', 'root', '', (), {})
self._used_names : Dict[str, int] = {} # base name -> number
self._insert = self._root.prepend
self._len = 0
@property
def nodes(self) -> _node_list:
"""
Get the list of Nodes that constitute this Graph.
Note that this ``Node`` list representation is a doubly-linked list. Mutations
during iteration (e.g. delete a Node, add a Node) are safe.
Returns:
A doubly-linked list of Nodes. Note that ``reversed`` can be called on
this list to switch iteration order.
"""
return _node_list(self)
def graph_copy(self, g : 'Graph', val_map : Dict[Node, Node]) -> 'Optional[Argument]':
"""
Copy all nodes from a given graph into ``self``.
Args:
g (Graph): The source graph from which to copy Nodes.
val_map (Dict[Node, Node]): a dictionary that will be populated with a mapping
from nodes in ``g`` to nodes in ``self``. Note that ``val_map`` can be passed
in with values in it already to override copying of certain values.
Returns:
The value in ``self`` that is now equivalent to the output value in ``g``,
if ``g`` had an ``output`` node. ``None`` otherwise.
"""
for node in g.nodes:
if node in val_map:
continue
if node.op == 'output':
rv = map_arg(node.args[0], lambda n: val_map[n])
return rv
val_map[node] = self.node_copy(node, lambda n : val_map[n])
return None
def __deepcopy__(self, memo=None) -> 'Graph':
"""
Explicitly implement __deepcopy__ to prevent excessive recursion depth
from the default implementation. This uses graph_copy to copy the nodes
in an iterative way, rather than recursive. It also populates the
memoization table to prevent unnecessary copies (e.g. references to
nodes or other parts of the Graph from a custom GraphModule implementation
"""
memo = memo if memo else {}
g = Graph()
output_val = g.graph_copy(self, val_map=memo)
g.output(output_val)
return g
def create_node(self, op: str, target: 'Target',
args: Optional[Tuple['Argument', ...]] = None,
kwargs: Optional[Dict[str, 'Argument']] = None,
name: Optional[str] = None,
type_expr: Optional[Any] = None) -> Node:
"""
Create a ``Node`` and add it to the ``Graph`` at the current insert-point.
Note that the current insert-point can be set via :meth:`Graph.inserting_before`
and :meth:`Graph.inserting_after`.
Args:
op (str): the opcode for this Node. One of 'call_function', 'call_method', 'get_attr',
'call_module', 'placeholder', or 'output'. The semantics of these opcodes are
described in the ``Graph`` docstring.
args (Optional[Tuple[Argument, ...]]): is a tuple of arguments to this node.
kwargs (Optional[Dict[str, Argument]]): the kwargs of this Node
name (Optional[str]): an optional string name for the ``Node``.
This will influence the name of the value assigned to in the
Python generated code.
type_expr (Optional[Any]): an optional type annotation representing the
Python type the output of this node will have.
Returns:
The newly-created and inserted node.
"""
assert op in ('call_function', 'call_method', 'get_attr', 'call_module', 'placeholder', 'output')
args = () if args is None else args
kwargs = {} if kwargs is None else kwargs
assert isinstance(args, tuple), "args must be a tuple"
assert isinstance(kwargs, dict), "kwargs must be a dict"
unique_name = self._create_unique_name(name if name is not None else self._target_to_str(target))
n = Node(self, unique_name, op, target, args, kwargs, type_expr)
self._insert(n)
self._len += 1
return n
def erase_node(self, to_erase : Node) -> None:
"""
Erases a ``Node`` from the ``Graph``. Throws an exception if
there are still users of that node in the ``Graph``.
Args:
to_erase (Node): The ``Node`` to erase from the ``Graph``.
"""
if len(to_erase.users) > 0:
raise RuntimeError(f'Tried to erase Node {to_erase} but it still had {len(to_erase.users)} '
f'users in the graph: {to_erase.users}!')
to_erase._remove_from_list()
to_erase._erased = True # iterators may retain handles to erased nodes
self._len -= 1
# Null out this Node's argument nodes so that the Nodes referred to
# can update their ``users`` accordingly
new_args = map_arg(to_erase.args, lambda n: None)
assert isinstance(new_args, tuple)
to_erase.args = new_args
new_kwargs = map_arg(to_erase.kwargs, lambda n: None)
assert isinstance(new_kwargs, dict)
to_erase.kwargs = new_kwargs
def inserting_before(self, n: Optional[Node] = None):
"""Set the point at which create_node and companion methods will insert into the graph.
When used within a 'with' statement, this will temporary set the insert point and
then restore it when the with statement exits::
with g.inserting_before(n):
... # inserting before node n
... # insert point restored to what it was previously
g.inserting_before(n) # set the insert point permanently
Args:
n (Optional[Node]): The node before which to insert. If None this will insert before
the beginning of the entire graph.
Returns:
A resource manager that will restore the insert point on ``__exit__``.
"""
if n is None:
return self.inserting_after(self._root)
assert n.graph == self, "Node to insert before is not in graph."
return _InsertPoint(self, n.prepend)
def inserting_after(self, n: Optional[Node] = None):
"""Set the point at which create_node and companion methods will insert into the graph.
When used within a 'with' statement, this will temporary set the insert point and
then restore it when the with statement exits::
with g.inserting_after(n):
... # inserting after node n
... # insert point restored to what it was previously
g.inserting_after(n) # set the insert point permanently
Args:
n (Optional[Node]): The node before which to insert. If None this will insert after
the beginning of the entire graph.
Returns:
A resource manager that will restore the insert point on ``__exit__``.
"""
if n is None:
return self.inserting_before(self._root)
assert n.graph == self, "Node to insert after is not in graph."
return _InsertPoint(self, n.append)
# sugar for create_node when you know the op
def placeholder(self, name: str, type_expr: Optional[Any] = None) -> Node:
"""
Loading ...