#pragma once
#include <stdint.h>
#include <mutex>
#include <deque>
#include <atomic>
#include <typeinfo>
#include <utility>
#include <cstddef>
#include <c10/util/Exception.h>
#include <c10/util/C++17.h>
#include <c10/util/intrusive_ptr.h>
#include <c10/core/Device.h>
#include <c10/core/DispatchKeySet.h>
// For the record I don't think this is a correct pimpl idiom.
// Including Impl header in interface header defeats the purpose
// because you can't change Impl private members without forcing
// everything that included the interface to rebuild.
// Impl should be forward-declared in the interface header instead.
#include <c10/core/GeneratorImpl.h>
/**
* Note [Generator]
* ~~~~~~~~~~~~~~~~
* A Pseudo Random Number Generator (PRNG) is an engine that uses an algorithm to
* generate a seemingly random sequence of numbers, that may be later be used in creating
* a random distribution. Such an engine almost always maintains a state and requires a
* seed to start off the creation of random numbers. Often times, users have
* found it beneficial to be able to explicitly create, retain, and destroy
* PRNG states and also be able to have control over the seed value.
*
* A Generator in ATen gives users the ability to read, write and modify a PRNG engine.
* For instance, it does so by letting users seed a PRNG engine, fork the state of the
* engine, etc.
*
* By default, there is one generator per device, and a device's generator is
* lazily created. A user can use the torch.Generator() api to create their own generator.
*/
/**
* Note [Acquire lock when using random generators]
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Generator and its derived classes are NOT thread-safe. Please note that most of the
* places where we have inserted locking for generators are historically based, and we
* haven't actually checked that everything is truly thread safe (and it probably isn't).
* Please use the public mutex_ when using any methods from these classes, except for the
* read-only methods. You can learn about the usage by looking into the unittests
* (aten/src/ATen/cpu_generator_test.cpp) and other places where we have used lock_guard.
*
* TODO: Look into changing the threading semantics of Generators in ATen (e.g., making
* them non-thread safe and instead making the generator state splittable, to accommodate
* forks into other threads).
*/
namespace at {
class Tensor;
struct TORCH_API Generator {
Generator() {}
explicit Generator(c10::intrusive_ptr<c10::GeneratorImpl> gen_impl)
: impl_(std::move(gen_impl)) {
if (impl_.get() == nullptr) {
throw std::runtime_error("GeneratorImpl with nullptr is not supported");
}
}
bool operator==(const Generator& rhs) const {
return this->impl_ == rhs.impl_;
}
bool operator!=(const Generator& rhs) const {
return !((*this) == rhs);
}
bool defined() const {
return static_cast<bool>(impl_);
}
c10::GeneratorImpl* unsafeGetGeneratorImpl() const {
return impl_.get();
}
c10::GeneratorImpl* unsafeReleaseGeneratorImpl() {
return impl_.release();
}
const c10::intrusive_ptr<c10::GeneratorImpl>& getIntrusivePtr() const {
return impl_;
}
void set_current_seed(uint64_t seed) { impl_->set_current_seed(seed); }
uint64_t current_seed() const { return impl_->current_seed(); }
uint64_t seed() { return impl_->seed(); }
// Implementation not inlined to prevent cycle reference between
// `ATen/core/Generator.h` and `ATen/core/Tensor.h`
void set_state(const at::Tensor& new_state);
at::Tensor get_state() const;
std::mutex& mutex() {
return impl_->mutex_;
}
DispatchKeySet key_set() const {
return impl_->key_set();
}
Device device() const { return impl_->device(); }
inline void set_pyobj(PyObject* pyobj) const noexcept {
impl_->set_pyobj(pyobj);
}
inline PyObject* pyobj() const noexcept {
return impl_->pyobj();
}
template<typename T>
T* get() const { return static_cast<T*>(impl_.get()); }
Generator clone() const {
return Generator(impl_->clone());
}
private:
c10::intrusive_ptr<c10::GeneratorImpl> impl_;
};
template<class Impl, class... Args>
Generator make_generator(Args&&... args) {
return Generator(c10::make_intrusive<Impl>(std::forward<Args>(args)...));
}
namespace detail {
/**
* Helper function for checking the validity of new random generator
* state. Right now following conditions are checked:
*
* - The new state tensor must be a torch.ByteTensor
* - Data of the new state tensor must be contiguous
*/
static inline void check_rng_state(const c10::TensorImpl& new_state) {
TORCH_CHECK_TYPE(
new_state.layout() == kStrided && new_state.device().type() == kCPU && new_state.dtype() == kByte,
"RNG state must be a torch.ByteTensor"
);
TORCH_CHECK(new_state.is_contiguous(), "RNG state must be contiguous");
}
} // namespace detail
} // namespace at