#pragma once
#include <array>
#include <cstdint>
#include <c10/macros/Macros.h>
#include <ATen/core/Array.h>
#include <ATen/native/TensorIterator.h>
#include <THC/THCIntegerDivider.cuh>
/// OffsetCalculator calculates the offset in bytes of a linear index for NARGS
/// operands that share the same shape, but may have different strides.
#ifdef __HIP_PLATFORM_HCC__
constexpr int MAX_DIMS = 16;
#else
constexpr int MAX_DIMS = 25;
#endif
template <int NARGS, typename index_t = uint32_t>
struct OffsetCalculator {
// The offset for each argument. Wrapper around fixed-size array.
// On CUDA, zero sized array is not allowed, so when we are handling nullary
// operators, we need to create a size 1 offset to avoid compiler failure.
// This size 1 offset is just a placeholder, and we will not use it.
using offset_type = at::detail::Array<index_t, std::max<int>(NARGS, 1)>;
// if element_sizes is nullptr, then the strides will be in bytes, otherwise
// the strides will be in # of elements.
OffsetCalculator(int dims, const int64_t* sizes, const int64_t* const* strides, const int64_t* element_sizes=nullptr) : dims(dims) {
TORCH_CHECK(dims <= MAX_DIMS, "tensor has too many (>", MAX_DIMS, ") dims");
for (int i = 0; i < MAX_DIMS; ++i) {
if (i < dims) {
sizes_[i] = IntDivider<index_t>(sizes[i]);
} else {
sizes_[i] = IntDivider<index_t>(1);
}
for (int arg = 0; arg < NARGS; arg++) {
int64_t element_size = (element_sizes == nullptr ? 1LL : element_sizes[arg]);
strides_[i][arg] = i < dims ? strides[arg][i] / element_size : 0;
}
}
}
C10_HOST_DEVICE offset_type get(index_t linear_idx) const {
offset_type offsets;
#pragma unroll
for (int arg = 0; arg < NARGS; arg++) {
offsets[arg] = 0;
}
#pragma unroll
for (int dim = 0; dim < MAX_DIMS; ++dim) {
if (dim == dims) {
break;
}
auto divmod = sizes_[dim].divmod(linear_idx);
linear_idx = divmod.div;
#pragma unroll
for (int arg = 0; arg < NARGS; arg++) {
offsets[arg] += divmod.mod * strides_[dim][arg];
}
}
return offsets;
}
int dims;
IntDivider<index_t> sizes_[MAX_DIMS];
index_t strides_[MAX_DIMS][std::max<int>(NARGS, 1)];
};
template <int NARGS, typename index_t = uint32_t>
struct TrivialOffsetCalculator {
// The offset for each argument. Wrapper around fixed-size array.
// The offsets are in # of elements, not in bytes.
// On CUDA, zero sized array is not allowed, so when we are handling nullary
// operators, we need to create a size 1 offset to avoid compiler failure.
// This size 1 offset is just a placeholder, and we will not use it.
using offset_type = at::detail::Array<index_t, std::max<int>(NARGS, 1)>;
C10_HOST_DEVICE offset_type get(index_t linear_idx) const {
offset_type offsets;
#pragma unroll
for (int arg = 0; arg < NARGS; arg++) {
offsets[arg] = linear_idx;
}
return offsets;
}
};
template<int N>
static OffsetCalculator<N> make_offset_calculator(const at::TensorIteratorBase& iter) {
AT_ASSERT(N <= iter.ntensors());
std::array<const int64_t*, N> strides;
for (int i = 0; i < N; i++) {
strides[i] = iter.strides(i).data();
}
return OffsetCalculator<N>(iter.ndim(), iter.shape().data(), strides.data());
}