#pragma once
#include <THC/THCGeneral.h>
#include <THC/THCDeviceUtils.cuh>
#include <ATen/ATen.h>
#include <ATen/TensorUtils.h>
#include <ATen/Utils.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/detail/KernelUtils.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
#include <ATen/cuda/detail/IndexUtils.cuh>
#include <ATen/cuda/detail/TensorInfo.cuh>
#include <c10/macros/Macros.h>
namespace at {
namespace native {
using namespace at::cuda::detail;
// Kernel for fast unfold+copy on volumes
template <typename T>
__global__ void vol2col_kernel(
const int n,
const T* data_vol,
const int depth,
const int height,
const int width,
const int ksize_t,
const int ksize_h,
const int ksize_w,
const int pad_t,
const int pad_h,
const int pad_w,
const int stride_t,
const int stride_h,
const int stride_w,
const int dilation_t,
const int dilation_h,
const int dilation_w,
const int depth_col,
const int height_col,
const int width_col,
T* data_col) {
CUDA_KERNEL_LOOP(index, n) {
int w_out = index % width_col;
index /= width_col;
int h_out = index % height_col;
index /= height_col;
int t_out = index % depth_col;
int channel_in = index / depth_col;
int channel_out = channel_in * ksize_t * ksize_h * ksize_w;
int t_in = t_out * stride_t - pad_t;
int h_in = h_out * stride_h - pad_h;
int w_in = w_out * stride_w - pad_w;
data_col +=
((channel_out * depth_col + t_out) * height_col + h_out) * width_col +
w_out;
data_vol += ((channel_in * depth + t_in) * height + h_in) * width + w_in;
for (int i = 0; i < ksize_t; ++i) {
for (int j = 0; j < ksize_h; ++j) {
for (int k = 0; k < ksize_w; ++k) {
int t = t_in + i * dilation_t;
int h = h_in + j * dilation_h;
int w = w_in + k * dilation_w;
*data_col = (t >= 0 && h >= 0 && w >= 0 && t < depth && h < height &&
w < width)
? data_vol
[i * dilation_t * height * width + j * dilation_h * width +
k * dilation_w]
: static_cast<T>(0);
data_col += depth_col * height_col * width_col;
}
}
}
}
}
template <typename T>
void vol2col(
cudaStream_t stream,
const T* data_vol,
const int channels,
const int depth,
const int height,
const int width,
const int depth_col,
const int height_col,
const int width_col,
const int ksize_t,
const int ksize_h,
const int ksize_w,
const int pad_t,
const int pad_h,
const int pad_w,
const int stride_t,
const int stride_h,
const int stride_w,
const int dilation_t,
const int dilation_h,
const int dilation_w,
T* data_col) {
// We are going to launch channels * depth_col * height_col * width_col
// kernels, each kernel responsible for copying a single-channel grid.
// We cast an operand to int64 so that the product will not overflow
const auto num_kernels = static_cast<int64_t>(channels) * depth_col * height_col * width_col;
// Launch
vol2col_kernel<<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS, 0, stream>>>(
num_kernels,
data_vol,
depth,
height,
width,
ksize_t,
ksize_h,
ksize_w,
pad_t,
pad_h,
pad_w,
stride_t,
stride_h,
stride_w,
dilation_t,
dilation_h,
dilation_w,
depth_col,
height_col,
width_col,
data_col);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
template <typename T, typename accT>
__global__ void vol2im_kernel(
const unsigned n,
const T* data_col,
const unsigned depth,
const unsigned height,
const unsigned width,
const unsigned channels,
const unsigned kernel_t,
const unsigned kernel_h,
const unsigned kernel_w,
const unsigned pad_t,
const unsigned pad_h,
const unsigned pad_w,
const unsigned stride_t,
const unsigned stride_h,
const unsigned stride_w,
const unsigned dilation_t,
const unsigned dilation_h,
const unsigned dilation_w,
const unsigned depth_col,
const unsigned height_col,
const unsigned width_col,
T* data_vol) {
CUDA_KERNEL_LOOP(index, n) {
accT val = static_cast<accT>(0);
const unsigned w_im = index % width + pad_w;
const unsigned h_im = (index / width) % height + pad_h;
const unsigned t_im = (index / width / height) % depth + pad_t;
const unsigned c_im = index / (width * height * depth);
unsigned kernel_extent_w = (kernel_w - 1) * dilation_w + 1;
unsigned kernel_extent_h = (kernel_h - 1) * dilation_h + 1;
unsigned kernel_extent_t = (kernel_t - 1) * dilation_t + 1;
// compute the start and end of the output
const unsigned w_col_start =
(w_im < kernel_extent_w) ? 0 : (w_im - kernel_extent_w) / stride_w + 1;
const unsigned w_col_end = std::min(w_im / stride_w + 1, width_col);
const unsigned h_col_start =
(h_im < kernel_extent_h) ? 0 : (h_im - kernel_extent_h) / stride_h + 1;
const unsigned h_col_end = std::min(h_im / stride_h + 1, height_col);
const unsigned t_col_start =
(t_im < kernel_extent_t) ? 0 : (t_im - kernel_extent_t) / stride_t + 1;
const unsigned t_col_end = std::min(t_im / stride_t + 1, depth_col);
// TODO: use LCM of stride and dilation to avoid unnecessary loops
for (unsigned t_col = t_col_start; t_col < t_col_end; t_col += 1) {
for (unsigned h_col = h_col_start; h_col < h_col_end; h_col += 1) {
for (unsigned w_col = w_col_start; w_col < w_col_end; w_col += 1) {
unsigned t_k = (t_im - t_col * stride_t);
unsigned h_k = (h_im - h_col * stride_h);
unsigned w_k = (w_im - w_col * stride_w);
if (t_k % dilation_t == 0 && h_k % dilation_h == 0 &&
w_k % dilation_w == 0) {
t_k /= dilation_t;
h_k /= dilation_h;
w_k /= dilation_w;
const int64_t idx_k =
((c_im * kernel_t + t_k) * kernel_h + h_k) * kernel_w + w_k;
const int64_t data_col_index =
((idx_k * depth_col + t_col) *
height_col + h_col) *
width_col + w_col;
val += data_col[data_col_index];
}
}
}
}
data_vol[index] = static_cast<T>(val);
}
}
template <typename T, typename accT>
void col2vol(
cudaStream_t stream,
const T* data_col,
const int64_t channels,
const int64_t depth,
const int64_t height,
const int64_t width,
const int64_t output_depth,
const int64_t output_height,
const int64_t output_width,
const int64_t patch_t,
const int64_t patch_h,
const int64_t patch_w,
const int64_t pad_t,
const int64_t pad_h,
const int64_t pad_w,
const int64_t stride_t,
const int64_t stride_h,
const int64_t stride_w,
const int64_t dilation_t,
const int64_t dilation_h,
const int64_t dilation_w,
T* data_vol) {
const auto num_kernels = channels * depth * height * width;
auto check_fits_in_unsigned =
[](int64_t val, const char * name) {
constexpr auto umax = std::numeric_limits<unsigned>::max();
TORCH_CHECK(val >= 0 && val <= umax,
name, " must fit in a 32-bit unsigned value");
};
check_fits_in_unsigned(num_kernels, "input size");
check_fits_in_unsigned(
channels * patch_t * patch_h * patch_w, "channels x kernel size");
// To avoid involving atomic operations, we will launch one kernel per
// bottom dimension, and then in the kernel add up the top dimensions.
vol2im_kernel<T, accT>
<<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS, 0, stream>>>(
num_kernels,
data_col,
depth,
height,
width,
channels,
patch_t,
patch_h,
patch_w,
pad_t,
pad_h,
pad_w,
stride_t,
stride_h,
stride_w,
dilation_t,
dilation_h,
dilation_w,
output_depth,
output_height,
output_width,
data_vol);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
} // namespace native
} // namespace at