Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

neilisaac / torch   python

Repository URL to install this package:

Version: 1.8.0 

/ include / ATen / native / layer_norm.h

#pragma once

#include <ATen/ATen.h>
#include <ATen/native/DispatchStub.h>

namespace at {
namespace native {

namespace {

std::tuple<Tensor, Tensor, Tensor, int64_t, int64_t> _prepare_layer_norm_inputs(
    const Tensor& input,
    IntArrayRef normalized_shape,
    const Tensor& weight /* optional */,
    const Tensor& bias /* optional */) {

  const int normalized_ndim = normalized_shape.size();
  TORCH_CHECK(
      normalized_ndim >= 1,
      "Expected normalized_shape to be at least 1-dimensional, i.e., ",
      "containing at least one element, but got normalized_shape = ",
      normalized_shape);
  TORCH_CHECK(
      !weight.defined() || weight.sizes().equals(normalized_shape),
      "Expected weight to be of same shape as normalized_shape, but got ",
      "weight of shape ",
      weight.sizes(),
      " and normalized_shape = ",
      normalized_shape);
  TORCH_CHECK(
      !bias.defined() || bias.sizes().equals(normalized_shape),
      "Expected bias to be of same shape as normalized_shape, but got ",
      "bias of shape ",
      bias.sizes(),
      " and normalized_shape = ",
      normalized_shape);

  const auto input_shape = input.sizes();
  const auto input_ndim = input.dim();

  if (input_ndim < normalized_ndim ||
      !input_shape.slice(input_ndim - normalized_ndim)
           .equals(normalized_shape)) {
    std::stringstream ss;
    ss << "Given normalized_shape=" << normalized_shape
       << ", expected input with shape [*";
    for (auto size : normalized_shape) {
      ss << ", " << size;
    }
    ss << "], but got input of size" << input_shape;
    AT_ERROR(ss.str());
  }

  const int axis = input_ndim - normalized_ndim;
  const int64_t M =
      prod_intlist(input_shape.cbegin(), input_shape.cbegin() + axis);
  const int64_t N =
      prod_intlist(input_shape.cbegin() + axis, input_shape.cend());

  const auto& X = input.is_contiguous() ? input : input.contiguous();
  const auto& gamma = weight.is_contiguous() ? weight : weight.contiguous();
  const auto& beta = bias.is_contiguous() ? bias : bias.contiguous();

  return std::make_tuple(X, gamma, beta, M, N);
}

} // namespace

using forward_fn = void (*)(
    const Tensor& /* X */,
    const Tensor& /* gamma */,
    const Tensor& /* beta */,
    int64_t /* M */,
    int64_t /* N */,
    double /* eps */,
    Tensor* /* Y */,
    Tensor* /* mean */,
    Tensor* /* rstd */);

using backward_fn = void (*)(
    const Tensor& /* dY */,
    const Tensor& /* X */,
    const Tensor& /* mean */,
    const Tensor& /* rstd */,
    const Tensor& /* gamma */,
    int64_t /* M */,
    int64_t /* N */,
    Tensor* /* dX */,
    Tensor* /* dgamma */,
    Tensor* /* dbeta */);

DECLARE_DISPATCH(forward_fn, LayerNormKernel);
DECLARE_DISPATCH(backward_fn, LayerNormBackwardKernel);

} // namespace native
} // namespace at