#pragma once
#include <c10/core/DispatchKey.h>
#include <c10/util/llvmMathExtras.h>
#include <c10/util/Exception.h>
#include <ostream>
namespace c10 {
// A representation of a set of DispatchKeys. A tensor may have multiple
// tensor type ids, e.g., a Variable tensor can also be a CPU tensor; the
// DispatchKeySet specifies what type ids apply. The internal representation is
// as a 64-bit bit set (this means only 64 tensor type ids are supported).
//
// Note that DispatchKeys are ordered; thus, we can ask questions like "what is
// the highest priority DispatchKey in the set"? (The set itself is not
// ordered; two sets with the same ids will always have the ids ordered in the
// same way.)
//
// At the moment, there are no nontrivial uses of this set; tensors are always
// singletons. In the near future, this set will represent variable? + tensor
// type id. In the far future, it will be requires grad? + profiling? +
// tracing? + lazy? + tensor type id.
//
// (The difference between variable and requires grad, is that
// there are currently three states a tensor can be:
// 1. Not a variable
// 2. Variable with requires_grad=False
// 3. Variable with requires_grad=True
// Eventually, we want to kill state (1), and only dispatch to autograd
// handling code if one of the inputs requires grad.)
//
// An undefined tensor is one with an empty tensor type set.
class DispatchKeySet final {
public:
enum Full { FULL };
enum FullAfter { FULL_AFTER };
enum Raw { RAW };
// NB: default constructor representation as zero is MANDATORY as
// use of DispatchKeySet in TLS requires this.
constexpr DispatchKeySet()
: repr_(0) {}
constexpr DispatchKeySet(Full)
: repr_(std::numeric_limits<decltype(repr_)>::max()) {}
constexpr DispatchKeySet(FullAfter, DispatchKey t)
// LSB after t are OK, but not t itself.
: repr_((1ULL << (static_cast<uint8_t>(t) - 1)) - 1) {}
// Public version of DispatchKeySet(uint64_t) API; external users
// must be explicit when they do this!
constexpr DispatchKeySet(Raw, uint64_t x)
: repr_(x) {}
explicit constexpr DispatchKeySet(DispatchKey t)
: repr_(t == DispatchKey::Undefined
? 0
: 1ULL << (static_cast<uint8_t>(t) - 1)) {}
explicit constexpr DispatchKeySet(std::initializer_list<DispatchKey> ks)
: repr_(0) {
for (auto k : ks) {
repr_ |= DispatchKeySet(k).repr_;
}
}
// Test if a DispatchKey is in the set
bool inline has(DispatchKey t) const {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(t != DispatchKey::Undefined);
return static_cast<bool>(repr_ & DispatchKeySet(t).repr_);
}
// Test if DispatchKeySet is a superset of ks.
bool isSupersetOf(DispatchKeySet ks) const {
return (repr_ & ks.repr_) == ks.repr_;
}
// Perform set union
constexpr DispatchKeySet operator|(DispatchKeySet other) const {
return DispatchKeySet(repr_ | other.repr_);
}
// Perform set intersection
DispatchKeySet operator&(DispatchKeySet other) const {
return DispatchKeySet(repr_ & other.repr_);
}
// Compute the set difference self - other
DispatchKeySet operator-(DispatchKeySet other) const {
return DispatchKeySet(repr_ & ~other.repr_);
}
// Perform set equality
bool operator==(DispatchKeySet other) const {
return repr_ == other.repr_;
}
// Add a DispatchKey to the DispatchKey set. Does NOT mutate,
// returns the extended DispatchKeySet!
C10_NODISCARD DispatchKeySet add(DispatchKey t) const {
return *this | DispatchKeySet(t);
}
// Remove a DispatchKey from the DispatchKey set. This is
// generally not an operation you should be doing (it's
// used to implement operator<<)
C10_NODISCARD DispatchKeySet remove(DispatchKey t) const {
return DispatchKeySet(repr_ & ~DispatchKeySet(t).repr_);
}
// Is the set empty? (AKA undefined tensor)
bool empty() const {
return repr_ == 0;
}
uint64_t raw_repr() { return repr_; }
// Return the type id in this set with the highest priority (i.e.,
// is the largest in the DispatchKey enum). Intuitively, this
// type id is the one that should handle dispatch (assuming there
// aren't any further exclusions or inclusions).
DispatchKey highestPriorityTypeId() const {
// TODO: If I put Undefined as entry 64 and then adjust the
// singleton constructor to shift from the right, we can get rid of the
// subtraction here. It's modestly more complicated to get right so I
// didn't do it for now.
return static_cast<DispatchKey>(64 - llvm::countLeadingZeros(repr_));
}
DispatchKey highestPriorityBackendTypeId() const {
return (*this & ((1ULL << static_cast<uint8_t>(DispatchKey::EndOfBackendKeys)) - 1))
.highestPriorityTypeId();
}
private:
constexpr DispatchKeySet(uint64_t repr) : repr_(repr) {}
uint64_t repr_ = 0;
public:
// STL iterator for DispatchKeySet. Iterates through all DispatchKeys in the
// set. The iterator is only invalidated by the destruction of the underlying
// DispatchKeySet as the iterator stores a pointer to the raw representation of
// the DispatchKeySet.
class iterator {
public:
using self_type = iterator;
using iterator_category = std::input_iterator_tag;
using value_type = DispatchKey;
using difference_type = ptrdiff_t;
explicit iterator(const uint64_t *data_ptr, uint8_t i=0) : data_ptr_(data_ptr), i_(i) {
// Go to the first key in the set
++(*this);
}
self_type& operator++() {
TORCH_INTERNAL_ASSERT(i_ <= static_cast<uint8_t>(DispatchKey::NumDispatchKeys));
// Create a masked version of the set representation to ignore previous
// keys that we've iterated through.
uint64_t masked_data = llvm::maskTrailingZeros<uint64_t>(i_) & *data_ptr_;
uint64_t firstKeyIndex = llvm::findFirstSet(masked_data);
// If there are no keys, set to end iterator value
if (firstKeyIndex == std::numeric_limits<uint64_t>::max() ||
i_ == static_cast<uint8_t>(DispatchKey::NumDispatchKeys)) {
i_ = static_cast<uint8_t>(DispatchKey::NumDispatchKeys);
return *this;
}
i_ = static_cast<uint8_t>(firstKeyIndex) + 1;
return *this;
}
self_type operator++(int) {
self_type previous_iterator = *this;
++(*this);
return previous_iterator;
}
bool operator==(const self_type& rhs) const { return i_ == rhs.i_; }
bool operator!=(const self_type& rhs) const { return i_ != rhs.i_; }
DispatchKey operator*() const { return static_cast<DispatchKey> (i_); }
private:
const uint64_t *data_ptr_;
uint8_t i_;
};
public:
// Returns iterator to the first key in the set. If no keys are in the
// set, then will return the end iterator.
iterator begin() const { return iterator(&repr_); }
// We do not need to iterate beyond NumDispatchKeys so we will treat this as
// the end iterator. NumDispatchKeys will always be strictly less than 64.
iterator end() const { return iterator(&repr_, static_cast<uint8_t>(DispatchKey::NumDispatchKeys)); }
};
C10_API std::string toString(DispatchKeySet);
C10_API std::ostream& operator<<(std::ostream&, DispatchKeySet);
// autograd_dispatch_keyset should include all runtime autograd keys.
// Alias key DispatchKey::Autograd maps to autograd_dispatch_keyset.
// NB: keys in this set also get associated with Math
constexpr DispatchKeySet autograd_dispatch_keyset = DispatchKeySet({
DispatchKey::AutogradCPU,
DispatchKey::AutogradCUDA,
DispatchKey::AutogradXLA,
DispatchKey::AutogradNestedTensor,
DispatchKey::AutogradXPU,
DispatchKey::AutogradPrivateUse1,
DispatchKey::AutogradPrivateUse2,
DispatchKey::AutogradPrivateUse3,
DispatchKey::AutogradOther,
});
// backend dispatch keys that map to DispatchKey::AutogradOther
// NB: keys in this set also get associated with Math
constexpr DispatchKeySet autogradother_backends = DispatchKeySet({
DispatchKey::HIP,
DispatchKey::FPGA,
DispatchKey::MSNPU,
DispatchKey::Vulkan,
DispatchKey::Metal,
DispatchKey::MKLDNN,
DispatchKey::OpenGL,
DispatchKey::OpenCL,
DispatchKey::IDEEP,
DispatchKey::QuantizedCPU,
DispatchKey::QuantizedCUDA,
DispatchKey::ComplexCPU,
DispatchKey::ComplexCUDA,
DispatchKey::CustomRNGKeyId,
DispatchKey::MkldnnCPU,
DispatchKey::SparseCPU,
DispatchKey::SparseCUDA,
DispatchKey::SparseHIP,
DispatchKey::Meta,
});
// true if t is a backend dispatch key
C10_API bool isBackendDispatchKey(DispatchKey t);
// Resolve alias dispatch key to DispatchKeySet if applicable
C10_API DispatchKeySet getRuntimeDispatchKeySet(DispatchKey t);
// Returns a DispatchKeySet of all backend keys mapped to Autograd dispatch key t,
// DispatchKeySet is empty if t is not alias of DispatchKey::Autograd.
C10_API DispatchKeySet getBackendKeySetFromAutograd(DispatchKey t);
// This API exists because we have a use case for checking
// getRuntimeDispatchKeySet(alias).has(DispatchKey::Undefined)
// in OperatorEntry.cpp but we disallow it in has() API.
C10_API bool isIncludedInAlias(DispatchKey k, DispatchKey alias);
// Historically, every tensor only had a single DispatchKey, and it was always
// something like CPU, and there wasn't any of this business where TLS
// could cause the DispatchKey of a tensor to change. But we still have some
// legacy code that is still using DispatchKey for things like instanceof
// checks; if at all possible, refactor the code to stop using DispatchKey in
// those cases.
static inline DispatchKey legacyExtractDispatchKey(DispatchKeySet s) {
// NB: If you add any extra keys that can be stored in TensorImpl on
// top of existing "normal" keys like CPU/CUDA, you need to add it
// here. At the moment, RequiresGrad (replacement for Variable)
// is the most likely key that will need this treatment;
// After Autograd keys are moved from globally enabled set to TensorImpl,
// we should remove all Autograd keys before taking highestPriority.
return (s - autograd_dispatch_keyset).highestPriorityTypeId();
}
}