#pragma once
#include <memory>
#include <c10/macros/Macros.h>
namespace c10 {
using DeleterFnPtr = void (*)(void*);
namespace detail {
// Does not delete anything
TORCH_API void deleteNothing(void*);
// A detail::UniqueVoidPtr is an owning smart pointer like unique_ptr, but
// with three major differences:
//
// 1) It is specialized to void
//
// 2) It is specialized for a function pointer deleter
// void(void* ctx); i.e., the deleter doesn't take a
// reference to the data, just to a context pointer
// (erased as void*). In fact, internally, this pointer
// is implemented as having an owning reference to
// context, and a non-owning reference to data; this is why
// you release_context(), not release() (the conventional
// API for release() wouldn't give you enough information
// to properly dispose of the object later.)
//
// 3) The deleter is guaranteed to be called when the unique
// pointer is destructed and the context is non-null; this is different
// from std::unique_ptr where the deleter is not called if the
// data pointer is null.
//
// Some of the methods have slightly different types than std::unique_ptr
// to reflect this.
//
class UniqueVoidPtr {
private:
// Lifetime tied to ctx_
void* data_;
std::unique_ptr<void, DeleterFnPtr> ctx_;
public:
UniqueVoidPtr() : data_(nullptr), ctx_(nullptr, &deleteNothing) {}
explicit UniqueVoidPtr(void* data)
: data_(data), ctx_(nullptr, &deleteNothing) {}
UniqueVoidPtr(void* data, void* ctx, DeleterFnPtr ctx_deleter)
: data_(data), ctx_(ctx, ctx_deleter ? ctx_deleter : &deleteNothing) {}
void* operator->() const {
return data_;
}
void clear() {
ctx_ = nullptr;
data_ = nullptr;
}
void* get() const {
return data_;
}
void* get_context() const {
return ctx_.get();
}
void* release_context() {
return ctx_.release();
}
std::unique_ptr<void, DeleterFnPtr>&& move_context() {
return std::move(ctx_);
}
C10_NODISCARD bool compare_exchange_deleter(DeleterFnPtr expected_deleter, DeleterFnPtr new_deleter) {
if (get_deleter() != expected_deleter) return false;
ctx_ = std::unique_ptr<void, DeleterFnPtr>(ctx_.release(), new_deleter);
return true;
}
template <typename T>
T* cast_context(DeleterFnPtr expected_deleter) const {
if (get_deleter() != expected_deleter)
return nullptr;
return static_cast<T*>(get_context());
}
operator bool() const {
return data_ || ctx_;
}
DeleterFnPtr get_deleter() const {
return ctx_.get_deleter();
}
};
// Note [How UniqueVoidPtr is implemented]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// UniqueVoidPtr solves a common problem for allocators of tensor data, which
// is that the data pointer (e.g., float*) which you are interested in, is not
// the same as the context pointer (e.g., DLManagedTensor) which you need
// to actually deallocate the data. Under a conventional deleter design, you
// have to store extra context in the deleter itself so that you can actually
// delete the right thing. Implementing this with standard C++ is somewhat
// error-prone: if you use a std::unique_ptr to manage tensors, the deleter will
// not be called if the data pointer is nullptr, which can cause a leak if the
// context pointer is non-null (and the deleter is responsible for freeing both
// the data pointer and the context pointer).
//
// So, in our reimplementation of unique_ptr, which just store the context
// directly in the unique pointer, and attach the deleter to the context
// pointer itself. In simple cases, the context pointer is just the pointer
// itself.
inline bool operator==(const UniqueVoidPtr& sp, std::nullptr_t) noexcept {
return !sp;
}
inline bool operator==(std::nullptr_t, const UniqueVoidPtr& sp) noexcept {
return !sp;
}
inline bool operator!=(const UniqueVoidPtr& sp, std::nullptr_t) noexcept {
return sp;
}
inline bool operator!=(std::nullptr_t, const UniqueVoidPtr& sp) noexcept {
return sp;
}
} // namespace detail
} // namespace c10