#pragma once
#include <c10/util/C++17.h>
#include <c10/util/Exception.h>
#include <atomic>
#include <stdexcept>
namespace pybind11 {
template <typename, typename...>
class class_;
}
namespace c10 {
class intrusive_ptr_target;
namespace raw {
namespace weak_intrusive_ptr {
inline void incref(intrusive_ptr_target* self);
}
namespace intrusive_ptr {
inline void incref(intrusive_ptr_target * self);
}
// constructor tag used by intrusive_ptr constructors
struct DontIncreaseRefcount {};
}
/**
* intrusive_ptr<T> is an alternative to shared_ptr<T> that has better
* performance because it does the refcounting intrusively
* (i.e. in a member of the object itself).
* Your class T needs to inherit from intrusive_ptr_target to allow it to be
* used in an intrusive_ptr<T>. Your class's constructor should not allow
*`this` to escape to other threads or create an intrusive_ptr from `this`.
*/
// Note [Stack allocated intrusive_ptr_target safety]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// A well known problem with std::enable_shared_from_this is that it
// allows you to create a std::shared_ptr from a stack allocated object,
// which is totally bogus because the object will die once you return
// from the stack. In intrusive_ptr, we can detect that this has occurred,
// because we set the refcount/weakcount of objects which inherit from
// intrusive_ptr_target to zero, *unless* we can prove that the object
// was dynamically allocated (e.g., via make_intrusive).
//
// Thus, whenever you transmute a T* into a intrusive_ptr<T>, we check
// and make sure that the refcount isn't zero (or, a more subtle
// test for weak_intrusive_ptr<T>, for which the refcount may validly
// be zero, but the weak refcount better not be zero), because that
// tells us if the object was allocated by us. If it wasn't, no
// intrusive_ptr for you!
class C10_API intrusive_ptr_target {
// Note [Weak references for intrusive refcounting]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Here's the scheme:
//
// - refcount == number of strong references to the object
// weakcount == number of weak references to the object,
// plus one more if refcount > 0
// An invariant: refcount > 0 => weakcount > 0
//
// - THStorage stays live as long as there are any strong
// or weak pointers to it (weakcount > 0, since strong
// references count as a +1 to weakcount)
//
// - finalizers are called and data_ptr is deallocated when refcount == 0
//
// - Once refcount == 0, it can never again be > 0 (the transition
// from > 0 to == 0 is monotonic)
//
// - When you access THStorage via a weak pointer, you must
// atomically increment the use count, if it is greater than 0.
// If it is not, you must report that the storage is dead.
//
mutable std::atomic<size_t> refcount_;
mutable std::atomic<size_t> weakcount_;
template <typename T, typename NullType>
friend class intrusive_ptr;
friend inline void raw::intrusive_ptr::incref(intrusive_ptr_target* self);
template <typename T, typename NullType>
friend class weak_intrusive_ptr;
friend inline void raw::weak_intrusive_ptr::incref(intrusive_ptr_target* self);
protected:
// protected destructor. We never want to destruct intrusive_ptr_target*
// directly.
virtual ~intrusive_ptr_target() {
// Disable -Wterminate and -Wexceptions so we're allowed to use assertions
// (i.e. throw exceptions) in a destructor.
// We also have to disable -Wunknown-warning-option and -Wpragmas, because
// some other compilers don't know about -Wterminate or -Wexceptions and
// will show a warning about unknown warning options otherwise.
#if defined(_MSC_VER) && !defined(__clang__)
# pragma warning(push)
# pragma warning(disable: 4297) // function assumed not to throw an exception but does
#else
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wpragmas"
# pragma GCC diagnostic ignored "-Wunknown-warning-option"
# pragma GCC diagnostic ignored "-Wterminate"
# pragma GCC diagnostic ignored "-Wexceptions"
#endif
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
refcount_.load() == 0,
"Tried to destruct an intrusive_ptr_target that still has intrusive_ptr to it");
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
// See ~intrusive_ptr for optimization that will frequently result in 1 at destruction time.
weakcount_.load() == 1 || weakcount_.load() == 0,
"Tried to destruct an intrusive_ptr_target that still has weak_intrusive_ptr to it");
#if defined(_MSC_VER) && !defined(__clang__)
# pragma warning(pop)
#else
# pragma GCC diagnostic pop
#endif
}
constexpr intrusive_ptr_target() noexcept : refcount_(0), weakcount_(0) {}
// intrusive_ptr_target supports copy and move: but refcount and weakcount don't
// participate (since they are intrinsic properties of the memory location)
intrusive_ptr_target(intrusive_ptr_target&& other) noexcept : intrusive_ptr_target() {}
intrusive_ptr_target& operator=(intrusive_ptr_target&& other) noexcept { return *this; }
intrusive_ptr_target(const intrusive_ptr_target& other) noexcept : intrusive_ptr_target() {}
intrusive_ptr_target& operator=(const intrusive_ptr_target& other) noexcept { return *this; }
private:
/**
* This is called when refcount reaches zero.
* You can override this to release expensive resources.
* There might still be weak references, so your object might not get
* destructed yet, but you can assume the object isn't used anymore,
* i.e. no more calls to methods or accesses to members (we just can't
* destruct it yet because we need the weakcount accessible).
*
* Even if there are no weak references (i.e. your class is about to be
* destructed), this function is guaranteed to be called first.
* However, if you use your class for an object on the stack that is
* destructed by the scope (i.e. without intrusive_ptr), this function will
* not be called.
*/
virtual void release_resources() {}
};
namespace detail {
template <class TTarget>
struct intrusive_target_default_null_type final {
static constexpr TTarget* singleton() noexcept {
return nullptr;
}
};
template<class TTarget, class ToNullType, class FromNullType>
TTarget* assign_ptr_(TTarget* rhs) {
if (FromNullType::singleton() == rhs) {
return ToNullType::singleton();
} else {
return rhs;
}
}
// Increment needs to be acquire-release to make use_count() and
// unique() reliable.
inline size_t atomic_refcount_increment(std::atomic<size_t>& refcount) {
return refcount.fetch_add(1, std::memory_order_acq_rel) + 1;
}
// weak_use_count() is only used for testing, so we don't need it to
// be reliable. Relaxed should be fine.
inline size_t atomic_weakcount_increment(std::atomic<size_t>& weakcount) {
return weakcount.fetch_add(1, std::memory_order_relaxed) + 1;
}
// Both decrements need to be acquire-release for correctness. See
// e.g. std::shared_ptr implementation.
inline size_t atomic_refcount_decrement(std::atomic<size_t>& refcount) {
return refcount.fetch_sub(1, std::memory_order_acq_rel) - 1;
}
inline size_t atomic_weakcount_decrement(std::atomic<size_t>& weakcount) {
return weakcount.fetch_sub(1, std::memory_order_acq_rel) - 1;
}
} // namespace detail
template <class TTarget, class NullType>
class weak_intrusive_ptr;
template <
class TTarget,
class NullType = detail::intrusive_target_default_null_type<TTarget>>
class intrusive_ptr final {
private:
// the following static assert would be nice to have but it requires
// the target class T to be fully defined when intrusive_ptr<T> is instantiated
// this is a problem for classes that contain pointers to themselves
// static_assert(
// std::is_base_of<intrusive_ptr_target, TTarget>::value,
// "intrusive_ptr can only be used for classes that inherit from intrusive_ptr_target.");
#ifndef _WIN32
// This static_assert triggers on MSVC
// error C2131: expression did not evaluate to a constant
static_assert(
NullType::singleton() == NullType::singleton(),
"NullType must have a constexpr singleton() method");
#endif
static_assert(
std::is_base_of<TTarget, typename std::remove_pointer<decltype(NullType::singleton())>::type>::value,
"NullType::singleton() must return a element_type* pointer");
TTarget* target_;
template <class TTarget2, class NullType2>
friend class intrusive_ptr;
friend class weak_intrusive_ptr<TTarget, NullType>;
// Make pybind11::class_ be a friend class of intrusive_ptr, so that custom
// smart holder in pybind11 could access the private constructor of
// intrusive_ptr(T*) which took the ownership of the object. This is required
// by customer holder macro PYBIND11_DECLARE_HOLDER_TYPE, where it uses
// intrusive_ptr(TTarget*) to initialize and take ownership of the object. For
// details, see
// https://pybind11.readthedocs.io/en/stable/advanced/smart_ptrs.html#custom-smart-pointers
template <typename, typename...>
friend class pybind11::class_;
void retain_() {
if (target_ != NullType::singleton()) {
size_t new_refcount = detail::atomic_refcount_increment(target_->refcount_);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
new_refcount != 1,
"intrusive_ptr: Cannot increase refcount after it reached zero.");
}
}
void reset_() noexcept {
if (target_ != NullType::singleton() && detail::atomic_refcount_decrement(target_->refcount_) == 0) {
// justification for const_cast: release_resources is basically a destructor
// and a destructor always mutates the object, even for const objects.
const_cast<std::remove_const_t<TTarget>*>(target_)->release_resources();
// See comment above about weakcount. As long as refcount>0,
// weakcount is one larger than the actual number of weak references.
// So we need to decrement it here.
if (target_->weakcount_.load(std::memory_order_acquire) == 1 ||
detail::atomic_weakcount_decrement(target_->weakcount_) == 0) {
delete target_;
}
}
target_ = NullType::singleton();
}
// raw pointer constructors are not public because we shouldn't make
// intrusive_ptr out of raw pointers except from inside the make_intrusive(),
// reclaim() and weak_intrusive_ptr::lock() implementations.
// This constructor will not increase the ref counter for you.
// We use the tagged dispatch mechanism to explicitly mark this constructor
// to not increase the refcount
explicit intrusive_ptr(TTarget* target, raw::DontIncreaseRefcount) noexcept
: target_(target) {}
// This constructor will increase the ref counter for you.
// This constructor will be used by the make_intrusive(), and also pybind11,
// which wrap the intrusive_ptr holder around the raw pointer and incref
// correspondingly (pybind11 requires raw pointer constructor to incref by
// default).
explicit intrusive_ptr(TTarget* target)
: intrusive_ptr(target, raw::DontIncreaseRefcount{}) {
if (target_ != NullType::singleton()) {
// We can't use retain_(), because we also have to increase weakcount
// and because we allow raising these values from 0, which retain_()
// has an assertion against.
detail::atomic_refcount_increment(target_->refcount_);
detail::atomic_weakcount_increment(target_->weakcount_);
}
}
public:
using element_type = TTarget;
intrusive_ptr() noexcept
: intrusive_ptr(NullType::singleton(), raw::DontIncreaseRefcount{}) {}
intrusive_ptr(intrusive_ptr&& rhs) noexcept : target_(rhs.target_) {
rhs.target_ = NullType::singleton();
}
template <class From, class FromNullType>
/* implicit */ intrusive_ptr(intrusive_ptr<From, FromNullType>&& rhs) noexcept
: target_(detail::assign_ptr_<TTarget, NullType, FromNullType>(rhs.target_)) {
static_assert(
std::is_convertible<From*, TTarget*>::value,
"Type mismatch. intrusive_ptr move constructor got pointer of wrong type.");
rhs.target_ = FromNullType::singleton();
}
intrusive_ptr(const intrusive_ptr& rhs) : target_(rhs.target_) {
retain_();
}
template <class From, class FromNullType>
/* implicit */ intrusive_ptr(
const intrusive_ptr<From, FromNullType>& rhs)
: target_(detail::assign_ptr_<TTarget, NullType, FromNullType>(rhs.target_)) {
static_assert(
std::is_convertible<From*, TTarget*>::value,
"Type mismatch. intrusive_ptr copy constructor got pointer of wrong type.");
retain_();
}
~intrusive_ptr() noexcept {
reset_();
}
intrusive_ptr& operator=(intrusive_ptr&& rhs) & noexcept {
return operator=<TTarget, NullType>(std::move(rhs));
}
template <class From, class FromNullType>
intrusive_ptr& operator=(intrusive_ptr<From, FromNullType>&& rhs) &
noexcept {
static_assert(
std::is_convertible<From*, TTarget*>::value,
"Type mismatch. intrusive_ptr move assignment got pointer of wrong type.");
intrusive_ptr tmp = std::move(rhs);
swap(tmp);
return *this;
}
intrusive_ptr& operator=(const intrusive_ptr& rhs) & noexcept {
return operator=<TTarget, NullType>(rhs);
}
template <class From, class FromNullType>
intrusive_ptr& operator=(const intrusive_ptr<From, NullType>& rhs) & {
static_assert(
std::is_convertible<From*, TTarget*>::value,
"Type mismatch. intrusive_ptr copy assignment got pointer of wrong type.");
intrusive_ptr tmp = rhs;
swap(tmp);
return *this;
}
Loading ...