#ifndef CAFFE2_CORE_COMMON_GPU_H_
#define CAFFE2_CORE_COMMON_GPU_H_
#include <assert.h>
#include <cuda.h>
#include <cuda_runtime.h>
#ifndef __HIP_PLATFORM_HCC__
#ifdef __GNUC__
#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)
#pragma GCC diagnostic push
#endif
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
#endif // __GNUC__
#endif // __HIP_PLATFORM_HCC__
#include <cublas_v2.h>
#include <curand.h>
#include <driver_types.h>
#include "caffe2/core/common.h"
#include "caffe2/core/logging.h"
#include "c10/cuda/CUDAMacros.h"
#include "c10/cuda/CUDAMathCompat.h"
#include <c10/cuda/CUDAGuard.h>
#define CAFFE2_CUDA_EXPORT C10_EXPORT
// CAFFE2_CUDA_API gets translated to CAFFE2_HIP_API in hipify script, which
// causes a marco redefinition issue with the later definition of
// CAFFE2_HIP_API, so we exclude this definition when HIP is specified
#ifndef __HIP_PLATFORM_HCC__
#define CAFFE2_CUDA_API TORCH_CUDA_CPP_API
#endif // __HIP_PLATFORM_HCC__
#define CAFFE2_HIP_EXPORT C10_EXPORT
#define CAFFE2_HIP_API TORCH_HIP_API
// This is a macro defined for cuda fp16 support. In default, cuda fp16 is
// supported by NVCC 7.5, but it is also included in the Tegra X1 platform with
// a (custom?) NVCC 7.0. As a result, we would normally just check the cuda
// version here, but would also allow a use to pass in the flag
// CAFFE_HAS_CUDA_FP16 manually.
#ifndef CAFFE_HAS_CUDA_FP16
#define CAFFE_HAS_CUDA_FP16
#endif // CAFFE_HAS_CUDA_FP16
#ifdef CAFFE_HAS_CUDA_FP16
#include <cuda_fp16.h>
#endif
// cuda major revision number below which fp16 compute is not supoorted
#ifndef __HIP_PLATFORM_HCC__
constexpr int kFp16CUDADevicePropMajor = 6;
#else
constexpr int kFp16CUDADevicePropMajor = 3;
#endif
// Re-enable strict aliasing diagnostic if it was disabled.
#ifndef __HIP_PLATFORM_HCC__
#ifdef __GNUC__
#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)
#pragma GCC diagnostic pop
#endif
#endif // __GNUC__
#endif // __HIP_PLATFORM_HCC__
/**
* The maximum number of peers that each gpu can have when doing p2p setup.
* Currently, according to NVidia documentation, each device can support a
* system-wide maximum of eight peer connections.
* When Caffe2 sets up peer access resources, if we have more than 8 gpus,
* we will enable peer access in groups of 8.
*/
#define CAFFE2_CUDA_MAX_PEER_SIZE 8
namespace caffe2 {
#ifndef __HIP_PLATFORM_HCC__
/**
* Empty class to identify TensorCore-based math
*/
class TensorCoreEngine {};
#endif // __HIP_PLATFORM_HCC__
#if CUDA_VERSION >= 10000
#define CAFFE2_CUDA_PTRATTR_MEMTYPE type
#else
#define CAFFE2_CUDA_PTRATTR_MEMTYPE memoryType
#endif
/**
* A runtime function to report the cuda version that Caffe2 is built with.
*/
inline int CudaVersion() {
return CUDA_VERSION;
}
/**
* Returns the number of devices.
*/
CAFFE2_CUDA_API int NumCudaDevices();
/**
* Check if the current running session has a cuda gpu present.
*
* Note that this is different from having caffe2 built with cuda. Building
* Caffe2 with cuda only guarantees that this function exists. If there are no
* cuda gpus present in the machine, or there are hardware configuration
* problems like an insufficient driver, this function will still return false,
* meaning that there is no usable GPU present.
*
* In the open source build, it is possible that Caffe2's GPU code is
* dynamically loaded, and as a result a library could be only linked to the
* CPU code, but want to test if cuda is later available or not. In this case,
* one should use HasCudaRuntime() from common.h.
*/
inline bool HasCudaGPU() {
return NumCudaDevices() > 0;
}
/**
* Gets the current GPU id. This is a simple wrapper around cudaGetDevice().
*/
CAFFE2_CUDA_API int CaffeCudaGetDevice();
/**
* Gets the current GPU id. This is a simple wrapper around cudaGetDevice().
*/
CAFFE2_CUDA_API void CaffeCudaSetDevice(const int id);
/**
* Gets the GPU id that the current pointer is located at.
*/
CAFFE2_CUDA_API int GetGPUIDForPointer(const void* ptr);
/**
* Gets the device property for the given device. This function is thread safe.
* The initial run on this function is ~1ms/device; however, the results are
* cached so subsequent runs should be much faster.
*/
CAFFE2_CUDA_API const cudaDeviceProp& GetDeviceProperty(const int device);
/**
* Runs a device query function and prints out the results to LOG(INFO).
*/
CAFFE2_CUDA_API void DeviceQuery(const int deviceid);
/**
* Return a peer access pattern by returning a matrix (in the format of a
* nested vector) of boolean values specifying whether peer access is possible.
*
* This function returns false if anything wrong happens during the query of
* the GPU access pattern.
*/
CAFFE2_CUDA_API bool GetCudaPeerAccessPattern(vector<vector<bool>>* pattern);
/**
* Return the availability of TensorCores for math
*/
CAFFE2_CUDA_API bool TensorCoreAvailable();
/**
* Return a human readable cublas error string.
*/
CAFFE2_CUDA_API const char* cublasGetErrorString(cublasStatus_t error);
/**
* Return a human readable curand error string.
*/
CAFFE2_CUDA_API const char* curandGetErrorString(curandStatus_t error);
// CUDA: various checks for different function calls.
#define CUDA_ENFORCE(condition, ...) \
do { \
cudaError_t error = condition; \
CAFFE_ENFORCE_EQ( \
error, \
cudaSuccess, \
"Error at: ", \
__FILE__, \
":", \
__LINE__, \
": ", \
cudaGetErrorString(error), \
##__VA_ARGS__); \
} while (0)
#define CUDA_CHECK(condition) \
do { \
cudaError_t error = condition; \
CHECK(error == cudaSuccess) << cudaGetErrorString(error); \
} while (0)
#define CUDA_DRIVERAPI_ENFORCE(condition) \
do { \
CUresult result = condition; \
if (result != CUDA_SUCCESS) { \
const char* msg; \
cuGetErrorName(result, &msg); \
CAFFE_THROW("Error at: ", __FILE__, ":", __LINE__, ": ", msg); \
} \
} while (0)
#define CUDA_DRIVERAPI_CHECK(condition) \
do { \
CUresult result = condition; \
if (result != CUDA_SUCCESS) { \
const char* msg; \
cuGetErrorName(result, &msg); \
LOG(FATAL) << "Error at: " << __FILE__ << ":" << __LINE__ << ": " \
<< msg; \
} \
} while (0)
#define CUBLAS_ENFORCE(condition) \
do { \
cublasStatus_t status = condition; \
CAFFE_ENFORCE_EQ( \
status, \
CUBLAS_STATUS_SUCCESS, \
"Error at: ", \
__FILE__, \
":", \
__LINE__, \
": ", \
::caffe2::cublasGetErrorString(status)); \
} while (0)
#define CUBLAS_CHECK(condition) \
do { \
cublasStatus_t status = condition; \
CHECK(status == CUBLAS_STATUS_SUCCESS) \
<< ::caffe2::cublasGetErrorString(status); \
} while (0)
#define CURAND_ENFORCE(condition) \
do { \
curandStatus_t status = condition; \
CAFFE_ENFORCE_EQ( \
status, \
CURAND_STATUS_SUCCESS, \
"Error at: ", \
__FILE__, \
":", \
__LINE__, \
": ", \
::caffe2::curandGetErrorString(status)); \
} while (0)
#define CURAND_CHECK(condition) \
do { \
curandStatus_t status = condition; \
CHECK(status == CURAND_STATUS_SUCCESS) \
<< ::caffe2::curandGetErrorString(status); \
} while (0)
#define CUDA_1D_KERNEL_LOOP(i, n) \
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
i += blockDim.x * gridDim.x)
#define CUDA_2D_KERNEL_LOOP(i, n, j, m) \
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
i += blockDim.x * gridDim.x) \
for (size_t j = blockIdx.y * blockDim.y + threadIdx.y; j < (m); \
j += blockDim.y * gridDim.y)
// The following helper functions are here so that you can write a kernel call
// when you are not particularly interested in maxing out the kernels'
// performance. Usually, this will give you a reasonable speed, but if you
// really want to find the best performance, it is advised that you tune the
// size of the blocks and grids more reasonably.
// A legacy note: this is derived from the old good Caffe days, when I simply
// hard-coded the number of threads and wanted to keep backward compatibility
// for different computation capabilities.
// For more info on CUDA compute capabilities, visit the NVidia website at:
// http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
// The number of cuda threads to use. Since work is assigned to SMs at the
// granularity of a block, 128 is chosen to allow utilizing more SMs for
// smaller input sizes.
// 1D grid
constexpr int CAFFE_CUDA_NUM_THREADS = 128;
// 2D grid
constexpr int CAFFE_CUDA_NUM_THREADS_2D_DIMX = 16;
constexpr int CAFFE_CUDA_NUM_THREADS_2D_DIMY = 16;
// The maximum number of blocks to use in the default kernel call. We set it to
// 4096 which would work for compute capability 2.x (where 65536 is the limit).
// This number is very carelessly chosen. Ideally, one would like to look at
// the hardware at runtime, and pick the number of blocks that makes most
// sense for the specific runtime environment. This is a todo item.
// 1D grid
constexpr int CAFFE_MAXIMUM_NUM_BLOCKS = 4096;
// 2D grid
constexpr int CAFFE_MAXIMUM_NUM_BLOCKS_2D_DIMX = 128;
constexpr int CAFFE_MAXIMUM_NUM_BLOCKS_2D_DIMY = 128;
constexpr int kCUDAGridDimMaxX = 2147483647;
constexpr int kCUDAGridDimMaxY = 65535;
constexpr int kCUDAGridDimMaxZ = 65535;
/**
* @brief Compute the number of blocks needed to run N threads.
*/
inline int CAFFE_GET_BLOCKS(const int N) {
return std::max(
std::min(
(N + CAFFE_CUDA_NUM_THREADS - 1) / CAFFE_CUDA_NUM_THREADS,
CAFFE_MAXIMUM_NUM_BLOCKS),
// Use at least 1 block, since CUDA does not allow empty block
1);
}
/**
* @brief Compute the number of blocks needed to run N threads for a 2D grid
*/
inline dim3 CAFFE_GET_BLOCKS_2D(const int N, const int /* M */) {
dim3 grid;
// Not calling the 1D version for each dim to keep all constants as literals
grid.x = std::max(
std::min(
(N + CAFFE_CUDA_NUM_THREADS_2D_DIMX - 1) /
CAFFE_CUDA_NUM_THREADS_2D_DIMX,
CAFFE_MAXIMUM_NUM_BLOCKS_2D_DIMX),
// Use at least 1 block, since CUDA does not allow empty block
1);
grid.y = std::max(
std::min(
(N + CAFFE_CUDA_NUM_THREADS_2D_DIMY - 1) /
CAFFE_CUDA_NUM_THREADS_2D_DIMY,
CAFFE_MAXIMUM_NUM_BLOCKS_2D_DIMY),
// Use at least 1 block, since CUDA does not allow empty block
1);
return grid;
}
using CUDAGuard = c10::cuda::CUDAGuard;
template <typename T, int N>
struct SimpleArray {
T data[N];
};
Loading ...