#ifndef CAFFE2_CORE_DISTRIBUTIONS_STUBS_H_
#define CAFFE2_CORE_DISTRIBUTIONS_STUBS_H_
#include <c10/macros/Macros.h>
/**
* This file provides distributions compatible with
* ATen/core/DistributionsHelper.h but backed with the std RNG implementation
* instead of the ATen one.
*
* Caffe2 mobile builds currently do not depend on all of ATen so this is
* required to allow using the faster ATen RNG for normal builds but keep the
* build size small on mobile. RNG performance typically doesn't matter on
* mobile builds since the models are small and rarely using random
* initialization.
*/
namespace at {
namespace {
template <typename R, typename T>
struct distribution_adapter {
template <typename... Args>
C10_HOST_DEVICE inline distribution_adapter(Args... args)
: distribution_(std::forward<Args>(args)...) {}
template <typename RNG>
C10_HOST_DEVICE inline R operator()(RNG generator) {
return distribution_(*generator);
}
private:
T distribution_;
};
template <typename T>
struct uniform_int_from_to_distribution
: distribution_adapter<T, std::uniform_int_distribution<T>> {
C10_HOST_DEVICE inline uniform_int_from_to_distribution(
uint64_t range,
int64_t base)
: distribution_adapter<T, std::uniform_int_distribution<T>>(
base,
// std is inclusive, at is exclusive
base + range - 1) {}
};
template <typename T>
using uniform_real_distribution =
distribution_adapter<T, std::uniform_real_distribution<T>>;
template <typename T>
using normal_distribution =
distribution_adapter<T, std::normal_distribution<T>>;
template <typename T>
using bernoulli_distribution =
distribution_adapter<T, std::bernoulli_distribution>;
template <typename T>
using exponential_distribution =
distribution_adapter<T, std::exponential_distribution<T>>;
template <typename T>
using cauchy_distribution =
distribution_adapter<T, std::cauchy_distribution<T>>;
template <typename T>
using lognormal_distribution =
distribution_adapter<T, std::lognormal_distribution<T>>;
} // namespace
} // namespace at
#endif // CAFFE2_CORE_DISTRIBUTIONS_STUBS_H_