#ifndef CAFFE2_OPERATORS_CONV_OP_CACHE_H_
#define CAFFE2_OPERATORS_CONV_OP_CACHE_H_
#include <functional>
#include <unordered_map>
#include <vector>
#include "caffe2/core/logging.h"
#include "caffe2/core/tensor.h"
namespace caffe2 {
template <typename TAlgorithm>
class AlgorithmsCache {
public:
// Caches the best algorithm for a given
// combination of tensor dimensions & compute data type.
//
TAlgorithm getAlgorithm(
at::IntArrayRef tensorDimensions1,
at::IntArrayRef tensorDimensions2,
int algorithmFlags, // Differentiate between algorithms with different
// parameters in a generic way
std::function<TAlgorithm()> generatingFunc);
private:
std::unordered_map<int64_t, TAlgorithm> hash_;
};
template <typename TAlgorithm>
TAlgorithm AlgorithmsCache<TAlgorithm>::getAlgorithm(
at::IntArrayRef tensorDimensions1,
at::IntArrayRef tensorDimensions2,
int algorithmFlags,
std::function<TAlgorithm()> generatingFunc) {
int64_t seed = 0;
// Hash all of the inputs, which we wiill then use to try and look up
// a previously discovered algorithm, or fall back to generating a new one.
std::hash<int64_t> hashFn;
for (const auto num : tensorDimensions1) {
// Copied from boost::hash_combine.
// Adding 1 to differentiate between first and second vector.
seed ^= hashFn(num) + 0x9e3779b9 + (seed << 6) + (seed >> 2) + 1;
}
for (const auto num : tensorDimensions2) {
// Copied from boost::hash_combine.
seed ^= hashFn(num) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
}
// Adding 2 to differentiate from previous vectors
seed ^= hashFn(algorithmFlags) + 0x9e3779b9 + (seed << 6) + (seed >> 2) + 2;
if (seed == 0) {
return generatingFunc();
}
if (hash_.find(seed) == hash_.end()) {
TAlgorithm value = generatingFunc();
hash_[seed] = value;
}
return hash_[seed];
}
} // namespace caffe2
#endif