#ifndef CAFFE2_OPERATORS_MAP_OPS_H_
#define CAFFE2_OPERATORS_MAP_OPS_H_
#include <algorithm>
#include <iterator>
#include <string>
#include <typeinfo>
#include <unordered_map>
#include <utility>
#include <vector>
#include "caffe2/core/blob_serialization.h"
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
namespace caffe2 {
template <typename T>
struct TypeNameTraits {
static constexpr const char* name = "unknown";
};
template <>
struct TypeNameTraits<int64_t> {
static constexpr const char* name = "int64_t";
};
template <>
struct TypeNameTraits<int32_t> {
static constexpr const char* name = "int32_t";
};
template <typename KEY_T, typename VALUE_T>
struct MapTypeTraits {
using MapType = std::unordered_map<KEY_T, VALUE_T>;
static string MapTypeName() {
return string("(std::unordered_map<") + TypeNameTraits<KEY_T>::name + ", " +
TypeNameTraits<VALUE_T>::name + ">)";
}
};
using MapType64To64 = MapTypeTraits<int64_t, int64_t>::MapType;
using MapType64To32 = MapTypeTraits<int64_t, int32_t>::MapType;
using MapType32To32 = MapTypeTraits<int32_t, int32_t>::MapType;
using MapType32To64 = MapTypeTraits<int32_t, int64_t>::MapType;
template <class Context>
class CreateMapOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit CreateMapOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {}
~CreateMapOp() {}
bool RunOnDevice() override {
TensorProto::DataType key_dtype = static_cast<TensorProto::DataType>(
this->template GetSingleArgument<int>(
"key_dtype", TensorProto_DataType_INT32));
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
this, DataTypeToTypeMeta(key_dtype));
}
template <typename KEY_T>
bool DoRunWithType() {
TensorProto::DataType value_dtype = static_cast<TensorProto::DataType>(
this->template GetSingleArgument<int>(
"value_dtype", TensorProto_DataType_INT32));
return DispatchHelper<
TensorTypes2<int32_t, int64_t, GenericTensorImplementation>,
KEY_T>::call(this, DataTypeToTypeMeta(value_dtype));
}
template <typename KEY_T, typename VALUE_T>
bool DoRunWithType2() {
// clear to make sure the map is empty
this->template Output<typename MapTypeTraits<KEY_T, VALUE_T>::MapType>(MAP)
->clear();
return true;
}
template <typename KEY_T>
bool DoRunWithOtherType2() {
TensorProto::DataType value_dtype = static_cast<TensorProto::DataType>(
this->template GetSingleArgument<int>(
"value_dtype", TensorProto_DataType_INT32));
CAFFE_THROW(
"CreateMap is not implemented on value tensor of type ",
DataTypeToTypeMeta(value_dtype).name(),
"consider adding it as a type in the DispatchHelper list");
}
OUTPUT_TAGS(MAP);
};
template <class Context>
class KeyValueToMapOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit KeyValueToMapOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {}
~KeyValueToMapOp() {}
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
this, Input(KEYS));
}
template <typename KEY_T>
bool DoRunWithType() {
return DispatchHelper<
TensorTypes2<int32_t, int64_t, GenericTensorImplementation>,
KEY_T>::call(this, Input(VALUES));
}
template <typename KEY_T, typename VALUE_T>
bool DoRunWithType2() {
using MapType = typename MapTypeTraits<KEY_T, VALUE_T>::MapType;
const auto& key_input = Input(KEYS);
const auto& value_input = Input(VALUES);
CAFFE_ENFORCE_EQ(key_input.numel(), value_input.numel());
auto* key_data = key_input.template data<KEY_T>();
auto* value_data = value_input.template data<VALUE_T>();
auto* map_data = this->template Output<MapType>(MAP);
for (int i = 0; i < key_input.numel(); ++i) {
map_data->emplace(key_data[i], value_data[i]);
}
return true;
}
template <typename KEY_T>
bool DoRunWithOtherType2() {
CAFFE_THROW(
"KeyValueToMap is not implemented on value tensor of type ",
Input(VALUES).dtype().name(),
"consider adding it as a type in the DispatchHelper list");
}
INPUT_TAGS(KEYS, VALUES);
OUTPUT_TAGS(MAP);
};
template <class Context>
class MapToKeyValueOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit MapToKeyValueOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {}
~MapToKeyValueOp() {}
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<
MapType64To64,
MapType64To32,
MapType32To32,
MapType32To64>>::call(this, OperatorBase::InputBlob(MAP));
}
template <typename MAP_T>
bool DoRunWithType() {
using key_type = typename MAP_T::key_type;
using mapped_type = typename MAP_T::mapped_type;
auto& map_data = this->template Input<MAP_T>(MAP);
auto* key_output = Output(
KEYS, {static_cast<int64_t>(map_data.size())}, at::dtype<key_type>());
auto* value_output = Output(
VALUES,
{static_cast<int64_t>(map_data.size())},
at::dtype<mapped_type>());
auto* key_data = key_output->template mutable_data<key_type>();
auto* value_data = value_output->template mutable_data<mapped_type>();
for (const auto& it : map_data) {
*key_data = it.first;
*value_data = it.second;
key_data++;
value_data++;
}
return true;
}
INPUT_TAGS(MAP);
OUTPUT_TAGS(KEYS, VALUES);
};
template <typename KEY_T, typename VALUE_T>
class MapSerializer : public BlobSerializerBase {
public:
using MapType = typename MapTypeTraits<KEY_T, VALUE_T>::MapType;
void Serialize(
const void* pointer,
TypeMeta typeMeta,
const string& name,
BlobSerializerBase::SerializationAcceptor acceptor) override {
CAFFE_ENFORCE(typeMeta.Match<MapType>());
const MapType& map_data = *static_cast<const MapType*>(pointer);
int64_t sz = map_data.size();
Tensor key_tensor(CPU);
key_tensor.Resize(sz);
Tensor value_tensor(CPU);
value_tensor.Resize(sz);
auto* key_data = key_tensor.mutable_data<KEY_T>();
auto* value_data = value_tensor.mutable_data<VALUE_T>();
for (const auto& it : map_data) {
*key_data = it.first;
*value_data = it.second;
key_data++;
value_data++;
}
TensorProtos tensor_protos;
TensorSerializer ser;
ser.Serialize(
key_tensor, name, tensor_protos.add_protos(), 0, key_tensor.numel());
ser.Serialize(
value_tensor,
name,
tensor_protos.add_protos(),
0,
value_tensor.numel());
BlobProto blob_proto;
blob_proto.set_name(name);
blob_proto.set_type(MapTypeTraits<KEY_T, VALUE_T>::MapTypeName());
blob_proto.set_content(SerializeAsString_EnforceCheck(tensor_protos));
acceptor(name, SerializeBlobProtoAsString_EnforceCheck(blob_proto));
}
};
template <typename KEY_T, typename VALUE_T>
class MapDeserializer : public BlobDeserializerBase {
public:
using MapType = typename MapTypeTraits<KEY_T, VALUE_T>::MapType;
void Deserialize(const BlobProto& proto, Blob* blob) override {
TensorProtos tensor_protos;
CAFFE_ENFORCE(
tensor_protos.ParseFromString(proto.content()),
"Fail to parse TensorProtos");
TensorDeserializer deser;
Tensor key_tensor = deser.Deserialize(tensor_protos.protos(0));
Tensor value_tensor = deser.Deserialize(tensor_protos.protos(1));
auto* key_data = key_tensor.data<KEY_T>();
auto* value_data = value_tensor.data<VALUE_T>();
auto* map_ptr = blob->template GetMutable<MapType>();
for (int i = 0; i < key_tensor.numel(); ++i) {
map_ptr->emplace(key_data[i], value_data[i]);
}
}
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_MAP_OPS_H_