#ifndef CAFFE2_OPERATORS_REDUCE_FRONT_BACK_MAX_OPS_H_
#define CAFFE2_OPERATORS_REDUCE_FRONT_BACK_MAX_OPS_H_
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
template <typename T, class Context, bool FIRSTDIMS>
class MaxReduceDimsOp final : public Operator<Context> {
public:
template <class... Args>
explicit MaxReduceDimsOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
num_reduce_dims_(
this->template GetSingleArgument<int32_t>("num_reduce_dim", 1)) {}
USE_OPERATOR_CONTEXT_FUNCTIONS;
bool RunOnDevice() {
auto& X = Input(0);
CAFFE_ENFORCE(
num_reduce_dims_ >= 0 && num_reduce_dims_ <= X.dim(),
"For N-dim input tensor, support num_reduce_dims in range [0, N].");
const int rows = FIRSTDIMS ? X.size_to_dim(num_reduce_dims_)
: X.size_to_dim(X.dim() - num_reduce_dims_);
const int cols = FIRSTDIMS ? X.size_from_dim(num_reduce_dims_)
: X.size_from_dim(X.dim() - num_reduce_dims_);
vector<int64_t> output_shape;
int start_index = FIRSTDIMS ? num_reduce_dims_ : 0;
int end_index = FIRSTDIMS ? X.dim() : X.dim() - num_reduce_dims_;
for (int i = start_index; i < end_index; ++i) {
output_shape.push_back(X.sizes()[i]);
}
auto* Y = Output(0, output_shape, at::dtype<float>());
float* out_data = Y->template mutable_data<float>();
if (cols == 0 || rows == 0) {
math::Set(Y->numel(), static_cast<float>(0), out_data, &context_);
return true;
}
const int32_t* lengths_data = nullptr;
if (InputSize() > 1) {
const auto& lengths = Input(1);
lengths_data = lengths.template data<int32_t>();
CAFFE_ENFORCE(
num_reduce_dims_ == 1,
"Given lengths input, the number of reduce dimensions should be one.");
const int batch_size = FIRSTDIMS ? cols : rows;
CAFFE_ENFORCE(
lengths.numel() == batch_size,
"The size of lengths vector doesn't match the batch size.");
}
const float* data = X.template data<float>();
Compute(rows, cols, data, lengths_data, out_data);
return true;
}
protected:
void Compute(
int rows,
int cols,
const float* data,
const int32_t* lengths_data,
float* out_data);
int num_reduce_dims_;
};
template <typename T, class Context, bool FIRSTDIMS>
class MaxReduceDimsGradientOp final : public Operator<Context> {
public:
template <class... Args>
explicit MaxReduceDimsGradientOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
num_reduce_dims_(
this->template GetSingleArgument<int32_t>("num_reduce_dim", 1)) {}
USE_OPERATOR_CONTEXT_FUNCTIONS;
bool RunOnDevice() override {
auto& dY = Input(0);
auto& X = Input(1);
auto& Y = Input(2);
auto* dX = Output(0, X.sizes(), at::dtype<float>());
const int rows = FIRSTDIMS ? X.size_to_dim(num_reduce_dims_)
: X.size_to_dim(X.dim() - num_reduce_dims_);
const int cols = FIRSTDIMS ? X.size_from_dim(num_reduce_dims_)
: X.size_from_dim(X.dim() - num_reduce_dims_);
const float* dYdata = dY.template data<float>();
const float* Xdata = X.template data<float>();
const float* Ydata = Y.template data<float>();
const int32_t* lengths_data = nullptr;
if (InputSize() > 3) {
const auto& lengths = Input(3);
lengths_data = lengths.template data<int32_t>();
CAFFE_ENFORCE(
num_reduce_dims_ == 1,
"Given lengths input, the number of reduce dimensions should be one.");
const int batch_size = FIRSTDIMS ? cols : rows;
CAFFE_ENFORCE(
lengths.numel() == batch_size,
"The size of lengths vector doesn't match the batch size.");
}
float* dXdata = dX->template mutable_data<float>();
Compute(rows, cols, dYdata, Xdata, Ydata, lengths_data, dXdata);
return true;
}
protected:
void Compute(
int rows,
int cols,
const float* dYdata,
const float* Xdata,
const float* Ydata,
const int32_t* lengths_data,
float* dXdata);
int num_reduce_dims_;
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_REDUCE_FRONT_BACK_MAX_OPS_H_