#ifndef CAFFE2_OPERATORS_ROW_MUL_H_
#define CAFFE2_OPERATORS_ROW_MUL_H_
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
// A hacky version of Mul with broadcast
// RowMul([mat, w], [output])
template <typename T, class Context>
class RowMulOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(RowMulOp);
bool RunOnDevice() override {
auto& mat = Input(0);
auto& w = Input(1);
auto* output = Output(0, mat.sizes(), at::dtype<T>());
T* output_data = output->template mutable_data<T>();
const T* mat_data = mat.template data<T>();
const T* w_data = w.template data<T>();
// Dimension checking
CAFFE_ENFORCE_EQ(
w.numel(),
mat.dim32(0),
"Length of w should be equal to the first dim of mat");
auto block_size = mat.size_from_dim(1);
for (int i = 0; i < w.numel(); i++) {
size_t offset = i * block_size;
for (int j = 0; j < block_size; j++) {
output_data[offset + j] = mat_data[offset + j] * w_data[i];
}
}
return true;
}
};
// A hacky version
template <typename T, class Context>
class ReduceTailSumOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(ReduceTailSumOp);
bool RunOnDevice() override {
auto& mat = Input(0);
int N = mat.dim32(0);
int block_size = mat.size_from_dim(1);
auto* output = Output(0, {N}, at::dtype<T>());
T* output_data = output->template mutable_data<T>();
const T* mat_data = mat.template data<T>();
for (int i = 0; i < N; i++) {
output_data[i] = 0;
size_t offset = i * block_size;
for (int j = 0; j < block_size; j++) {
output_data[i] += mat_data[offset + j];
}
}
return true;
}
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_ROW_MUL_H_