#ifndef CAFFE2_OPERATORS_TILE_OP_H_
#define CAFFE2_OPERATORS_TILE_OP_H_
#include <array>
#include <string>
#include <type_traits>
#include <vector>
#include "caffe2/core/common_omp.h"
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/eigen_utils.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
// Copy a Blob n times along a specified axis.
template <class Context>
class TileOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit TileOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
OP_SINGLE_ARG(std::int32_t, "tiles", tiles_, 1),
OP_SINGLE_ARG(std::int32_t, "axis", axis_, 0) {}
bool RunOnDevice() override {
return DispatchHelper<
TensorTypes<std::int32_t, std::int64_t, float, double>>::
call(this, Input(0));
}
template <typename T>
bool DoRunWithType() {
if (InputSize() > 1) {
// We potentially have tiles and/or axis specified as inputs
// as well. We will check for them in that order. In other words:
// InputSize() == 2: tiles is specified
// InputSize() == 3: tiles is specified and axis.
// Anything specified as input will override the arguments
CAFFE_ENFORCE(
Input(1).dim() == 1 && Input(1).numel() == 1,
"Input `tiles` should be a vector of size 1.");
tiles_ = GetArgFromTensor(Input(1));
// Because of a bug in original code, temporarily adds this part to keep
// backward compatibility.
// TODO(yangxm): Remove this part when prod runtime upgraded with fixed
// model config.
if (Input(1).template IsType<std::int64_t>()) {
axis_ = 0;
}
if (InputSize() > 2) {
CAFFE_ENFORCE(
Input(2).dim() == 1 && Input(2).numel() == 1,
"Input `axis` should be a vector of size 1.");
axis_ = GetArgFromTensor(Input(2));
} else {
CAFFE_ENFORCE(
OperatorBase::HasArgument("axis"),
"Argument `axis` is missing and was not specified as input.");
}
} else {
CAFFE_ENFORCE(
OperatorBase::HasArgument("tiles"),
"Argument `tiles` is missing and was not specified as input.");
CAFFE_ENFORCE(
OperatorBase::HasArgument("axis"),
"Argument `axis` is missing and was not specified as input.");
}
const auto& X = Input(0);
auto* Y = Output(0);
const int axis = X.canonical_axis_index(axis_);
// reshape output to be input tiled along the axis
std::vector<std::int64_t> Y_dims = X.sizes().vec();
Y_dims[axis] *= tiles_;
Y->Resize(Y_dims);
// size up to (and not including) axis
const int outer_size = X.size_to_dim(axis);
// size from axis up
const int inner_size = X.size_from_dim(axis);
const T* X_data = X.template data<T>();
T* Y_data = Y->template mutable_data<T>();
return DoTile<T>(outer_size, inner_size, X_data, Y_data);
}
private:
std::int32_t GetArgFromTensor(const Tensor& tensor) {
CAFFE_ENFORCE(
tensor.IsType<std::int32_t>() || tensor.IsType<std::int64_t>());
std::int32_t val = -1;
if (tensor.IsType<std::int32_t>()) {
context_.template CopyToCPU<std::int32_t>(
1, tensor.data<std::int32_t>(), &val);
} else if (tensor.IsType<std::int64_t>()) {
std::int64_t val_int64;
context_.template CopyToCPU<std::int64_t>(
1, tensor.data<std::int64_t>(), &val_int64);
val = static_cast<std::int32_t>(val_int64);
}
return val;
}
template <typename T>
bool DoTile(const int outer_size, const int inner_size, const T* X, T* Y) {
if (inner_size == 1) {
EigenArrayMap<T> Y_arr(Y, tiles_, outer_size);
for (int i = 0; i < outer_size; ++i) {
Y_arr.col(i) = X[i];
}
} else {
ConstEigenArrayMap<T> X_arr(X, inner_size, outer_size);
for (int i = 0; i < outer_size; ++i) {
EigenArrayMap<T>(Y + i * tiles_ * inner_size, inner_size, tiles_)
.colwise() = X_arr.col(i);
}
}
return true;
}
std::int32_t tiles_;
std::int32_t axis_;
};
template <class Context>
class TileGradientOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit TileGradientOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
OP_SINGLE_ARG(std::int32_t, "tiles", tiles_, 1),
OP_SINGLE_ARG(std::int32_t, "axis", axis_, 0) {}
bool RunOnDevice() override {
return DispatchHelper<
TensorTypes<std::int32_t, std::int64_t, float, double>>::
call(this, Input(0));
}
template <typename T>
bool DoRunWithType() {
if (InputSize() > 1) {
// We potentially have tiles and/or axis specified as inputs
// as well. We will check for them in that order. In other words:
// InputSize() == 2: tiles is specified
// InputSize() == 3: tiles is specified and axis.
// Anything specified as input will override the arguments
CAFFE_ENFORCE(
Input(1).dim() == 1 && Input(1).numel() == 1,
"Input `tiles` should be a vector of size 1.");
tiles_ = GetArgFromTensor(Input(1));
if (InputSize() > 2) {
CAFFE_ENFORCE(
Input(2).dim() == 1 && Input(2).numel() == 1,
"Input `axis` should be a vector of size 1.");
axis_ = GetArgFromTensor(Input(2));
} else {
CAFFE_ENFORCE(
OperatorBase::HasArgument("axis"),
"Argument `axis` is missing and was not specified as input.");
}
} else {
CAFFE_ENFORCE(
OperatorBase::HasArgument("tiles"),
"Argument `tiles` is missing and was not specified as input.");
CAFFE_ENFORCE(
OperatorBase::HasArgument("axis"),
"Argument `axis` is missing and was not specified as input.");
}
const auto& dY = Input(0);
auto* dX = Output(0);
const int axis = dY.canonical_axis_index(axis_);
// reshape output to be input "untiled" along the axis
std::vector<std::int64_t> X_dims = dY.sizes().vec();
CAFFE_ENFORCE_EQ(X_dims[axis] % tiles_, 0);
X_dims[axis] /= tiles_;
dX->Resize(X_dims);
// size up to (and not including) axis
const int outer_size = dX->size_to_dim(axis);
// size from axis up
const int inner_size = dX->size_from_dim(axis);
/**
* How this works:
* Imagine a 2D tensor (matrix) of size 3x10, tiled 2 times along axis 1
* (column).
* This is equivalent to multiplying by a vector of 1s transposed.
* The gradient of this is all 1s in the shape of the input matrix
* (call it X).
* So the output gradient should be the matrix multiplication result
* of input gradient (gradient of tiled tensor output) and X.
*/
const T* dY_data = dY.template data<T>();
T* dX_data = dX->template mutable_data<T>();
return DoTileGradient<T>(outer_size, inner_size, dY_data, dX_data);
}
private:
std::int32_t GetArgFromTensor(const Tensor& tensor) {
CAFFE_ENFORCE(
tensor.IsType<std::int32_t>() || tensor.IsType<std::int64_t>());
std::int32_t val = -1;
if (tensor.IsType<std::int32_t>()) {
context_.template CopyToCPU<std::int32_t>(
1, tensor.data<std::int32_t>(), &val);
} else if (tensor.IsType<std::int64_t>()) {
std::int64_t val_int64;
context_.template CopyToCPU<std::int64_t>(
1, tensor.data<std::int64_t>(), &val_int64);
val = static_cast<std::int32_t>(val_int64);
}
return val;
}
template <typename T>
bool DoTileGradient(
const int outer_size,
const int inner_size,
const T* dY,
T* dX) {
if (inner_size == 1) {
const std::array<int, 2> dY_dims = {outer_size, tiles_};
const std::array<int, 2> dX_dims = {outer_size, 1};
math::ReduceSum<T, Context>(
2, dY_dims.data(), dX_dims.data(), T(1), dY, dX, &context_);
} else {
math::CopyMatrix<T, Context>(
outer_size,
inner_size,
dY,
inner_size * tiles_,
dX,
inner_size,
&context_);
for (int i = 0; i < outer_size; ++i) {
const T* dY_ptr = dY + i * tiles_ * inner_size;
T* dX_ptr = dX + i * inner_size;
for (int j = 1; j < tiles_; ++j) {
math::Add<T, Context>(
inner_size, dX_ptr, dY_ptr + j * inner_size, dX_ptr, &context_);
}
}
}
return true;
}
std::int32_t tiles_;
std::int32_t axis_;
Tensor ones_;
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_TILE_OP_H_