#pragma once
#include "caffe2/core/operator.h"
namespace caffe2 {
template <typename Context>
void storm_update(
const int N,
const float* paramIn,
const float* momentIn,
const float* gradSqSumIn,
const float* gradIn,
const float* lr,
float* paramOut,
float* momentOut,
float* gradSqSumOut,
const float momentum,
const float beta,
Context* /*context*/) {
float gradSqSumTmp = 0.0;
for (auto i = 0; i < N; ++i) {
const float gi = gradIn[i];
gradSqSumTmp += gi * gi;
}
gradSqSumOut[0] = gradSqSumIn[0] + gradSqSumTmp;
const float nlr = lr[0] * std::pow(beta + gradSqSumOut[0], -1.0 / 3.0);
const float alpha = momentum * nlr * nlr;
for (auto i = 0; i < N; ++i) {
const float gi = gradIn[i];
const float mi = momentIn[i];
float new_mi = momentOut[i] = gi + (1.0 - alpha) * (mi - gi);
paramOut[i] = paramIn[i] + nlr * new_mi;
}
}
template <class Context>
class StormOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
StormOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
OP_SINGLE_ARG(float, "momentum", momentum_, 10.0),
OP_SINGLE_ARG(float, "beta", beta_, 0.1) {}
bool RunOnDevice() override {
// Enforce shapes
CAFFE_ENFORCE_EQ(Input(GRAD).numel(), Input(PARAM).numel());
CAFFE_ENFORCE_EQ(Input(GRAD).numel(), Input(MOMENT).numel());
CAFFE_ENFORCE_EQ(Input(GRADSQSUM).numel(), 1);
CAFFE_ENFORCE_EQ(Input(LR).numel(), 1);
// Resize [potentially] out-of-place blobs
Output(OUTPUT_PARAM)->ResizeLike(Input(PARAM));
Output(OUTPUT_MOMENT)->ResizeLike(Input(MOMENT));
Output(OUTPUT_GRAGSQSUM)->ResizeLike(Input(GRADSQSUM));
storm_update<Context>(
Input(GRAD).numel(),
Input(PARAM).template data<float>(),
Input(MOMENT).template data<float>(),
Input(GRADSQSUM).template data<float>(),
Input(GRAD).template data<float>(),
Input(LR).template data<float>(),
Output(OUTPUT_PARAM)->template mutable_data<float>(),
Output(OUTPUT_MOMENT)->template mutable_data<float>(),
Output(OUTPUT_GRAGSQSUM)->template mutable_data<float>(),
momentum_,
beta_,
&context_);
return true;
}
protected:
const float momentum_;
const float beta_;
INPUT_TAGS(PARAM, MOMENT, GRADSQSUM, GRAD, LR);
OUTPUT_TAGS(OUTPUT_PARAM, OUTPUT_MOMENT, OUTPUT_GRAGSQSUM);
};
template <class Context>
class SparseStormOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
SparseStormOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
OP_SINGLE_ARG(float, "momentum", momentum_, 10.0),
OP_SINGLE_ARG(float, "beta", beta_, 0.1) {}
bool RunOnDevice() override {
// Enforce shapes
CAFFE_ENFORCE_EQ(Input(PARAM).numel(), Input(MOMENT).numel());
CAFFE_ENFORCE_EQ(Input(GRADSQSUM).numel(), 1);
CAFFE_ENFORCE_EQ(Input(LR).numel(), 1);
CAFFE_ENFORCE_EQ(
Input(PARAM).size_from_dim(1),
Input(GRAD).size_from_dim(Input(INDICES).dim()));
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
this, Input(INDICES));
}
template <typename SIndex>
bool DoRunWithType() {
const auto* paramIn = Input(PARAM).template data<float>();
const auto* momentIn = Input(MOMENT).template data<float>();
const auto* gradSqSumIn = Input(GRADSQSUM).template data<float>();
const auto* gradIn = Input(GRAD).template data<float>();
const auto* indices = Input(INDICES).template data<SIndex>();
const auto* lr = Input(LR).template data<float>();
auto* paramOut = Output(OUTPUT_PARAM)->template mutable_data<float>();
auto* momentOut = Output(OUTPUT_MOMENT)->template mutable_data<float>();
auto* gradSqSumOut =
Output(OUTPUT_GRAGSQSUM)->template mutable_data<float>();
auto n = Input(INDICES).numel();
if (n == 0) {
return true;
}
float gradSqSumTmp = 0.0;
for (auto i = 0; i < Input(GRAD).numel(); ++i) {
const float gi = gradIn[i];
gradSqSumTmp += gi * gi;
}
gradSqSumOut[0] = gradSqSumIn[0] + gradSqSumTmp;
const float nlr = lr[0] * std::pow(beta_ + gradSqSumOut[0], -1.0 / 3.0);
const float alpha = momentum_ * nlr * nlr;
const auto block_size = Input(GRAD).numel() / n;
for (auto i = 0; i < n; ++i) {
auto idx = indices[i];
if (block_size == 1) {
const float gi = gradIn[i];
const float mi = momentIn[idx];
float new_mi = momentOut[idx] = gi + (1.0 - alpha) * (mi - gi);
paramOut[idx] = paramIn[idx] + nlr * new_mi;
} else {
auto offsetI = i * block_size;
auto offsetIdx = idx * block_size;
#ifndef NDEBUG
CAFFE_ENFORCE_GE(
Input(PARAM).numel(),
block_size + offsetIdx,
this->debug_def().input(PARAM),
", out of bound, idx:",
idx,
" for input i:",
i,
" and block size:",
block_size);
CAFFE_ENFORCE_GE(
Input(GRAD).numel(),
block_size + offsetI,
this->debug_def().input(GRAD),
", out of bound idx, idx:",
idx,
" for input i:",
i);
#endif
for (auto j = 0; j < block_size; ++j) {
const float gi = gradIn[offsetI + j];
const float mi = momentIn[offsetIdx + j];
float new_mi = momentOut[offsetIdx + j] =
gi + (1.0 - alpha) * (mi - gi);
paramOut[offsetIdx + j] = paramIn[offsetIdx + j] + nlr * new_mi;
}
}
}
return true;
}
protected:
const float momentum_;
const float beta_;
INPUT_TAGS(PARAM, MOMENT, GRADSQSUM, GRAD, INDICES, LR);
OUTPUT_TAGS(OUTPUT_PARAM, OUTPUT_MOMENT, OUTPUT_GRAGSQSUM);
};
} // namespace caffe2