#pragma once
#include <torch/csrc/utils/python_stub.h>
#include <torch/csrc/WindowsTorchApiMacro.h>
#include <torch/csrc/autograd/edge.h>
#include <torch/csrc/autograd/function_hook.h>
#include <torch/csrc/autograd/cpp_hook.h>
#include <torch/csrc/autograd/forward_grad.h>
#include <ATen/ATen.h>
#include <ATen/NamedTensorUtils.h>
#include <c10/util/Exception.h>
#include <memory>
#include <mutex>
#include <stdexcept>
#include <string>
#include <utility>
#include <vector>
#include <cstdint>
namespace torch { namespace autograd {
/// `Variable` is exactly the same as `Tensor` (i.e. we have `using Variable = at::Tensor`).
/// This means you can perform all the usual mathematical and other
/// operations you can perform on `Tensor`s also on `Variable`s.
///
/// The only reason we are keeping the `Variable` class is backward compatibility
/// with external user's legacy C++ frontend code. Our intention is to eliminate
/// the `Variable` class in the near future.
using Variable = at::Tensor;
} // namespace autograd
} // namespace torch
// The following are all internal APIs and should not be shown in libtorch docs.
// Therefore, we wrap the following code with `#ifndef DOXYGEN_SHOULD_SKIP_THIS ... #endif`
#ifndef DOXYGEN_SHOULD_SKIP_THIS
namespace torch { namespace autograd {
/// Check if this type is supported by the autograd engine.
/// If you change this, update the doc at the top of the torch/autograd/__init__.py file
/// and "test_set_requires_grad_only_for_continuous_types" in test/test_autograd.py
static inline bool isDifferentiableType(at::ScalarType t) {
return isFloatingType(t) || isComplexType(t);
}
struct Node;
///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Variable
///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// A `Variable` augments a `Tensor` with the ability to interact in our
/// autograd machinery. Conceptually, `Variable`s travel along `Edge`s between
/// `Node`s in the autograd graph. A `Variable` can either be a leaf, like a
/// weight in a neural network, or an interior variable, when it is the result
/// of an operation between variables. Every `Variable` also stores another
/// `Variable` called its `grad` (gradient). If the variable is a leaf, its
/// gradient will be accumulated into this variable.
///
/// Every Tensor is a Variable, but sometimes we colloquially refer to Variables
/// that don't require gradients as Tensors (since none of the autograd
/// machinery for Variables applies). Historically, Variables and Tensors
/// were separate concepts, but now they are exactly the same (i.e. we have
/// `using Variable = at::Tensor`).
///
/// Gradient Edges
///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Furthermore, `Variable`s have the notion of a `gradient_edge`, which is the
/// edge in the autograd graph that connects the variable to a particular input
/// of the gradient function that will be invoked with the variable during the
/// backward pass. More precisely, this gradient function can be one of two
/// things:
/// 1. A `grad_fn`, if the variable is in the interior of the graph. This is the
/// gradient of the function that produced the variable.
/// 2. A `grad_accumulator`, if the variable is a leaf, which accumulates a
/// scalar gradient value into its `grad` variable.
///
/// Versioning
///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Another major feature of `Variable`s are *versions*. Versions are
/// incremented when an in-place mutation of a variable occurs. Versions are
/// useful when constructing `SavedVariable`s, which take a snapshot of a
/// `Variable` at a certain version. You can retrieve a `Variable`'s version
/// through its `current_version()` method.
///
/// Views
///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// It is possible for a `Variable` to be a *view* of another `Variable`, in
/// which case it tracks that `Variable`'s data and autograd history. Beyond
/// construction, the interface of a view is identical to that of a regular
/// `Variable`. You can determine whether `Variable` is in fact a view by
/// probing its `is_view()` method. Note that the *view* semantics are only
/// meaningful for `Variable` relations that are relevant to autograd.
/// See NOTE [ Autograd View Variables ] for more details.
///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
struct AutogradMeta;
struct DifferentiableViewMeta;
// Private-ish functions for manipulating variables; we don't want to put them
// on Tensor proper
namespace impl {
// WARNING: This may return a nullptr. If you require AutogradMeta to return
// a materialized structure, use materialize_autograd_meta instead.
TORCH_API AutogradMeta* get_autograd_meta(const Variable&);
// Returns the current autograd meta, materializing it if it was previously
// none. This counts as a *mutating* operation, so do not call it on
// "read-only" operators; in particular, this is NOT thread safe
TORCH_API AutogradMeta* materialize_autograd_meta(const Variable&);
/// Set the gradient accumulator of the `Variable`. This is only applicable to
/// leaf variables. Interior variables should call `set_gradient_edge()`.
TORCH_API void set_grad_accumulator(const Variable&, std::weak_ptr<Node> grad_accumulator);
/// Attempts to get a pointer to the gradient accumulator of the `Variable`,
/// if it still exists. If the gradient accumulator function has been
/// destroyed, returns a `nullptr`.
TORCH_API std::shared_ptr<Node> try_get_grad_accumulator(const Variable&);
/// Gets the gradient accumulator of the `Variable` if it has one, or else
/// create one on the fly and return it.
TORCH_API std::shared_ptr<Node> grad_accumulator(const Variable&);
/// Returns the "canonical" gradient edge of this `Variable`, i.e. either the
/// gradient function if this is an interior `Variable`, or the gradient
/// accumulator otherwise. If the `Variable` is interior, the returned `Edge`
/// will store the input index of the `Node` to which this variable is
/// connected in its `input_nr` field. For leaves, the `input_nr` is always
/// zero. Note that `set_gradient_edge` and `gradient_edge` are not
/// symmetric. You must use `set_gradient_edge` to set the `grad_fn` and
/// `set_grad_accumulator` to set the accumulator.
TORCH_API Edge gradient_edge(const Variable&);
/// Set the gradient edge -- i.e. `grad_fn` and `input_nr` -- of the
/// `Variable`.
/// NOTE: This will always set the `grad_fn`, even if this is a leaf variable,
/// and never the `grad_accumulator`. For the latter, use
/// `set_grad_accumulator`. This allows late construction of an interior
/// `Variable`.
TORCH_API void set_gradient_edge(const Variable&, Edge edge);
// Autograd Graph Interaction
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Update the `grad_fn` of an existing Variable. Called after in-place
/// modifications.
///
/// For View Variables:
/// Called after in-place modifications. Modifies the grad_fn of the base
/// Variable.
TORCH_API void rebase_history(const Variable&, Edge gradient_edge);
/// Gets the raw gradient function pointer, whatever it currently is.
TORCH_API Node* grad_fn_unsafe(const Variable&);
/// Increments the version count of this `Variable`.
TORCH_API void bump_version(const Variable&);
TORCH_API void set_version_counter(const Variable&, const c10::VariableVersion& version_counter);
/// Retrieves this `Variable`s version counter.
TORCH_API const c10::VariableVersion& version_counter(const Variable&);
TORCH_API PyObject* pyobj(const Variable&);
TORCH_API void set_pyobj(const Variable&, PyObject* pyobj);
TORCH_API void set_name(const Variable&, const std::string& name);
TORCH_API void add_hook(const Variable&, std::shared_ptr<FunctionPreHook> hook);
TORCH_API const std::vector<std::shared_ptr<FunctionPreHook>>& hooks(const Variable&);
TORCH_API void clear_hooks(const Variable&);
TORCH_API void create_cpp_hook(const Variable&);
}
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// AutogradMeta
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Each `Variable` has one unique `AutogradMeta` struct, which stores autograd
/// metadata fields that are necessary for tracking the Variable's autograd history.
/// As an optimization, a Variable may store a nullptr, in lieu of a default
/// constructed AutogradMeta.
struct TORCH_API AutogradMeta : public c10::AutogradMetaInterface {
std::string name_;
Variable grad_;
std::shared_ptr<Node> grad_fn_;
std::weak_ptr<Node> grad_accumulator_;
// This field is used to store all the forward AD gradients
// associated with this AutogradMeta (and the Tensor it corresponds to)
// There is a semantic 1:1 correspondence between AutogradMeta and
// ForwardGrad but:
// - This field is lazily populated.
// - This field is a shared_ptr but it must never be
// shared by multiple Tensors. See Note [ Using ForwardGrad ]
// Any transition from not_initialized to initialized
// must be protected by mutex_
std::shared_ptr<ForwardGrad> fw_grad_;
std::vector<std::shared_ptr<FunctionPreHook>> hooks_;
std::shared_ptr<hooks_list> cpp_hooks_list;
// Only meaningful on leaf variables (must be false otherwise)
bool requires_grad_;
// Only meaningful on non-leaf variables (must be false otherwise)
bool retains_grad_;
bool is_view_;
// The "output number" of this variable; e.g., if this variable
// was the second output of a function, then output_nr == 1.
// We use this to make sure we can setup the backwards trace
// correctly when this variable is passed to another function.
uint32_t output_nr_;
// Mutex to ensure that concurrent read operations that modify internal
// state are still thread-safe. Used by grad_fn(), grad_accumulator(),
// fw_grad() and set_fw_grad()
// This is mutable because we need to be able to acquire this from const
// version of this class for the functions above
mutable std::mutex mutex_;
/// Sets the `requires_grad` property of `Variable`. This should be true for
/// leaf variables that want to accumulate gradients, and false for all other
/// variables.
void set_requires_grad(bool requires_grad, at::TensorImpl* self_impl) override {
TORCH_CHECK(
!requires_grad || isDifferentiableType(at::typeMetaToScalarType(self_impl->dtype())),
"Only Tensors of floating point and complex dtype can require gradients");
requires_grad_ = requires_grad;
}
bool requires_grad() const override {
return requires_grad_ || grad_fn_;
}
/// Accesses the gradient `Variable` of this `Variable`.
Variable& mutable_grad() override {
return grad_;
}
const Variable& grad() const override {
return grad_;
}
const Variable& fw_grad(uint64_t level, const Variable& self) const override;
void set_fw_grad(const Variable& new_grad, const Variable& self, uint64_t level, bool is_inplace_op) override;
AutogradMeta(at::TensorImpl* self_impl = nullptr, bool requires_grad = false, Edge gradient_edge = Edge() ) {
grad_fn_ = std::move(gradient_edge.function);
requires_grad_ = false;
retains_grad_ = false;
is_view_ = false;
output_nr_ = gradient_edge.input_nr;
// set_requires_grad also checks error conditions.
if (requires_grad) {
TORCH_INTERNAL_ASSERT(self_impl);
set_requires_grad(requires_grad, self_impl);
}
TORCH_CHECK(
!grad_fn_ || !requires_grad_,
"requires_grad should be false if grad_fn is set");
}
~AutogradMeta() override {
// If AutogradMeta is being destroyed, it means that there is no other reference to its
// corresponding Tensor. It implies that no other thread can be using this object and so there is
// no need to lock mutex_ here to guard the check if fw_grad_ is populated.
if (fw_grad_) {
// See note [ Using ForwardGrad ]
fw_grad_->clear();
}
}
};
struct TORCH_API ViewInfo {
/// The base `Variable`
/// If this ViewInfo represents a forward (respectively backward) AD gradient,
/// then this Tensor cannot be a forward (respectively backward) view.
Variable base_;
/// By default we use as_strided to recover views which is more efficient.
/// view_fn is only saved when as_strided is not supported.
/// If view_fn has value, we use it to recover views in backward.
std::function<Variable(const Variable&)> view_fn_;
/// Accessors for the view function
bool has_view_fn() const {
return view_fn_ != nullptr;
}
std::function<Variable(const Variable&)> view_fn() const {
TORCH_CHECK(has_view_fn(), "Can only access the view function if it exists.");
return view_fn_;
}
/// The chain function can be used to build a new ViewInfo for a differentiable view
/// function. It will return a new view info that accurately represents how "tensor" is
/// a view of this instance's "base_".
/// The "base" and "tensor" are respectively the input and output of the differentiable
/// view function that happened. They are required to properly set the optional
/// view_fn_ when it is not provided.
/// The "view_func", if provided, should be a function that allows to re-do the view
/// between "base" and "tensor".
ViewInfo chain(const Variable & base, const Variable & tensor,
std::function<Variable(const Variable&)> view_func=nullptr) const;
ViewInfo(Variable base, std::function<Variable(const Variable&)> view_fn) :
base_(std::move(base)),
view_fn_(std::move(view_fn)) {
TORCH_CHECK(base_.defined(), "base is undefined");
}
};
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// DifferentiableViewMeta
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// NOTE [ Autograd View Variables ]
///
/// Many operations return Variable that shares storage with an input Variable.
/// The returned Variable is called a **view** Variable on the input **base**
/// Variable.
///
/// In PyTorch, we have two types of views: differentiable views, and
/// non-differentiable views. In either type, to support proper version
/// checking, the base and view Variables must always share the same
/// version_counter.
///
///
/// Differentiable Views
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// This class allows to track both forward and backward AD differentiable views.
/// These views can have different base as non-differentiable view for forward
/// and backward mode AD are not the same.
///
/// Most function are either both forward and backward differentiable views (for
/// example: view, select, narrow, transpose, etc) or both not forward and not
/// backward differentiable views (for example: indices, values, eq, lt, etc).
/// But there are also functions that are forward but not backward differentiable
/// views (only detach for now) or functions that are backward but not forward
/// differentiable view (only make_dual and unpack dual for now).
///
/// A concrete example of two views with different bases is as follow:
///
/// # Have:
/// # dual is a dual Tensor that is neither a forward or backward view
/// detached_dual = dual.detach()
/// view = detached_dual.view_as(dual)
/// # The forward base of view is dual
/// # The backward base of view is detached_dual
///
/// - Backward Mode View
/// Differentiable views are the view variables where you want gradients to flow
/// back to the base variables. Out-of-place operations on views are quite
/// straightforward, but in-place ones are very tricky. Even if the base
/// variable may not require grad when we create the view, we still need to
/// track the view relation because future in-place ops may require back-proping
/// through it. For example, we need to support
///
/// (1) in-place operation on view, e.g.,
///
/// # Have:
/// # base.requires_grad = False
/// # var.requires_grad = True
/// base[1] = var # i.e., base[1].copy_(var)
/// torch.autograd.grad(base.sum(), var) <- should return an all ones tensor
///
/// (2) in-place operation on base after view is created, e.g.,
///
/// # Have:
/// # base.requires_grad = False
/// # var.requires_grad = True
/// view = base[1]
/// base.copy_(var)
/// torch.autograd.grad(view.sum(), var) <- should return a tensor with
/// var[1] filled with all ones and
/// zeros everywhere else
///
/// - Forward Mode View
/// Forward differentiable views follow the same semantic as backward ones but
/// show up differently as they are computed along with the forward evaluation.
/// The hard examples above are thus very similar
///
/// (1) in-place operation on view, e.g.,
///
/// # Have:
/// # base is a regular Tensor
/// # var is a dual Tensor whose tangent is all ones
/// base[1] = var # i.e., base[1].copy_(var)
/// # Now, base is a dual Tensor
/// _, fw_grad = fwAD.unpack_dual(base) <- fw_grad should be a tensor with
/// fw_grad[1] filled with all ones and
/// zeros everywhere else
///
/// (2) in-place operation on base after view is created, e.g.,
///
/// # Have:
/// # base is a regular Tensor
/// # var is a dual Tensor whose tangent is all ones
/// view = base[1]
/// base.copy_(var)
/// _, fw_grad = fwAD.unpack_dual(view) <- fw_grad should be an all ones tensor
///
/// See Note [Forward Grad View/inplace] for more details on how we handle these hard cases.
///
///
/// DifferentiableViewMeta is created to support gradient tracking of
/// such **in-place** operations. In particular,
/// + if an in-place op is done on base, the grad_fn field of the view may
/// become stale. So accesses should always go through grad_fn(), which
/// reconstructs an updated grad_fn if the version_counter has incremented.
/// All other fields are always valid.
/// + if an in-place op is done on view, in rebase_history() of view, which is
/// called after every in-place op in VariableType.cpp, the grad_fn of base
/// is updated.
/// + if a single autograd Node returns multiple differentiable views, if any
/// output is modified by an inplace operation, the autograd engine will make
/// an equivalent graph (corresponding to the view operations) without using
/// equivalent graph, where each output is treated as if it were produced by a
/// distinct view operation. This discards the original (e.g., user provided)
/// grad_fn. If the provided grad_fn does more than the backward of the view,
/// then the DifferentiableViewMeta must be created with creation_meta=
/// CreationMeta::MULTI_OUTPUT_NODE to prevent the engine from ignoring the
/// provided grad_fn.
///
/// Interaction with GradMode:
/// The particular case that we consider here is:
///
/// # Have:
/// # base.requires_grad = True or False
/// with torch.no_grad():
/// view = base[1]
/// base.requires_grad_()
/// view.copy_(var)
/// torch.autograd.grad(base.sum(), var) <- what should it return?
///
/// Given that this particular code example is ambiguous and can easily be replace by
/// either moving both inside the no_grad block or both outside, we explicitly forbid
/// it. For now, it is deprecated by a warning. This is achieved by setting
/// creation_meta=CreationMeta::NO_GRAD_MODE for all differentiable views created
/// in no_grad mode.
///
/// See Note [View + Inplace update for base tensor]
/// and Note [View + Inplace update for view tensor] for the details how autograd
/// handles inplace update with view ops.
///
/// Non-Differentiable Views
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// In certain cases, although function outputs share storage with inputs, they
/// will **never** require gradient history tracking. Instead of registering the
/// view relation via DifferentiableViewMeta in autograd, the views will be
/// using usual AutogradMeta and just share the version counters with the base
/// Variables.
/// Such views include:
/// 1. Views created from .detach()
/// 2. Views that are non-differentiable by its nature.
/// E.g., `sparse_tensor.indices()` is a integral view on a (possibly)
/// floating point tensor.
/// See top of `derivatives.yaml` on how to specify that outputs of a
/// function are non-differentiable.
/// These are called non-differentiable views as the gradients do not flow
/// through the view relation.
///
/// Relevant logic for both differentiable and non-differentiable views is implemented in
/// make_variable_(non_)differentiable_view below, and wrap_output of gen_variable_type.py.
/// NOTE [ View + Inplace detection ]
///
/// We want to detect views followed by inplace as they are often forbidden to ensure
/// correctness of the computed gradients. But since we want to only notify the user
/// when both happen, we tag the DifferentiableViewMeta when the view is created
/// via the `make_variable_*_view()` functions. This tag is then checked by the
/// `check_inplace()` function from `VariableTypeUtils.h` that should be called before
/// every inplace operation and to detect cases where other views are modified and this
/// one is rebased by side effect, we also check in the `VariableHooks::grad_fn()`.
/// Flag that gives more information about when this view was created:
/// - IN_CUSTOM_FUNCTION should be set when the view is created inside a custom
/// autograd Function is returned.
/// - NO_GRAD_MODE should be set when a view in created when GradMode is disabled
/// - MULTI_OUTPUT_NODE should be set when a Node created by codegen code returns
/// multiple differentiable views
/// - MULTI_OUTPUT_SAFE should be set when a view was returned by a function
/// that returns multiple views, and unsafe_* version of that function
/// exists. These are note considered as views for now for the view+inplace
/// logic! The graph won't be rewritten when an inplace is done, only a
/// warning will be thrown.
/// - DEFAULT is for all other cases
enum class CreationMeta: uint8_t { DEFAULT, IN_CUSTOM_FUNCTION, MULTI_OUTPUT_NODE,
NO_GRAD_MODE, MULTI_OUTPUT_SAFE };
/// Handles correctly propagating CreationMeta when a new view is created from a previous view.
/// In general, we don't want the new view to be _less_ restrictive than the previous view
/// (it's okay to be _more_ restrictive). A CreationMeta value of DEFAULT is currently the least
/// restrictive, as the behavior for all other CreationMeta values is to error out for in-place ops.
/// If this changes, the logic here will need to be updated to properly handle the new semantics.
inline CreationMeta propagate_creation_meta(CreationMeta prev_view_creation_meta, CreationMeta new_view_creation_meta) {
return (new_view_creation_meta == CreationMeta::DEFAULT) ? prev_view_creation_meta : new_view_creation_meta;
}
/// Unified function to handle error checking when rebase happens
/// indirect=true means that the caller is not doing the inplace, but the inplace happened
/// somewhere else.
TORCH_API void handle_view_on_rebase(DifferentiableViewMeta* diff_view_meta, bool indirect=false);
struct TORCH_API DifferentiableViewMeta : public AutogradMeta {
private:
/// Informations about the views
c10::optional<ViewInfo> backward_info_;
c10::optional<ViewInfo> forward_info_;
/// The two following fields are extra information that we track to ensure that
/// any operation on this backward view is valid.
/// The value of the version_counter at the time grad_fn was created. The
/// grad_fn field is stale if attr_version != version_counter.current_version().
uint32_t attr_version;
CreationMeta creation_meta;
public:
/// requires_grad is a backward AD field so we only use the view specific logic
/// for backward differentiable views
bool requires_grad() const override {
return requires_grad_ || grad_fn_ || (has_bw_view() && get_backward_view().base_.requires_grad());
}
bool has_bw_view() const {
return backward_info_.has_value();
}
const ViewInfo& get_backward_view() const {
TORCH_CHECK(has_bw_view(), "backward view info can only exist for backward views.");
return backward_info_.value();
}
uint32_t get_attr_version() const {
TORCH_CHECK(has_bw_view(), "attr_version can only exist for backward views.");
return attr_version;
}
void set_attr_version(uint32_t new_attr_version) {
TORCH_CHECK(has_bw_view(), "attr_version can only exist for backward views.");
attr_version = new_attr_version;
}
CreationMeta get_creation_meta() const {
TORCH_CHECK(has_bw_view(), "creation_meta can only exist for backward views.");
return creation_meta;
}
void set_creation_meta(CreationMeta new_creation_meta) {
TORCH_CHECK(has_bw_view(), "creation_meta can only exist for backward views.");
creation_meta = new_creation_meta;
}
bool has_fw_view() const {
return forward_info_.has_value();
}
const ViewInfo& get_forward_view() const {
TORCH_CHECK(has_fw_view(), "forward view info can only exist for forward views.");
return forward_info_.value();
}
DifferentiableViewMeta(at::TensorImpl* self_impl, c10::optional<ViewInfo> backward_info,
c10::optional<ViewInfo> forward_info, CreationMeta creation_meta=CreationMeta::DEFAULT);
};
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Variable Implementation
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Factory Functions
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Creates a `Variable` that is a *view* of another (*base*) variable.
/// The `gradient_edge` is an optional (gradient_function, input_number) pair.
/// `is_differentiable` is a bool that specifies whether this view is
/// differentiable, i.e., whether the relation should be tracked by autograd.
/// See NOTE [ Autograd View Variables ] for details.
/// NOTE: `allow_tensor_metadata_change` is set to true by default, because there
/// are a lot of call sites to these factory functions that need to change the
/// variable's size or storage afterwards, and they don't expect the original
/// tensor (where the variable is created from) to be updated. Setting
/// `allow_tensor_metadata_change_` to false by default would unnecessarily
/// prevent those changes from happening and is undesirable.
// See NOTE [ Autograd View Variables ] for details.
// Differentiable view. Track history with DifferentiableViewMeta.
inline Variable make_variable_differentiable_view(
const at::Tensor& data,
c10::optional<ViewInfo> backward_info,
c10::optional<ViewInfo> forward_info,
CreationMeta creation_meta,
bool allow_tensor_metadata_change = true) {
if (data.defined()) {
// If we already did a TensorImpl allocation for data, just reuse it.
// Otherwise(e.g tensor.swapdim(0, 0) when we return the same tensor as input),
// we have to use shallow_copy_and_detach to create a new TensorImpl to avoid
// moving leaf node into graph interior. This guarantees only 1 TensorImpl
// allocation happens in view ops.
if (data.getIntrusivePtr().unique() && data.getIntrusivePtr()->unique_version()) {
at::TensorImpl* data_impl = data.unsafeGetTensorImpl();
data_impl->set_autograd_meta(std::make_unique<DifferentiableViewMeta>(
data_impl, std::move(backward_info), std::move(forward_info),
creation_meta));
return data;
} else {
c10::intrusive_ptr<at::TensorImpl> data_impl_copy = data.getIntrusivePtr()->shallow_copy_and_detach(
/*version_counter=*/0,
/*allow_tensor_metadata_change=*/true);
data_impl_copy->set_autograd_meta(std::make_unique<DifferentiableViewMeta>(
data_impl_copy.get(), std::move(backward_info), std::move(forward_info),
creation_meta));
return Variable(data_impl_copy);
}
}
return Variable();
}
// See NOTE [ Autograd View Variables ] for details.
// Non-differentiable view. Just share version counter.
inline Variable make_variable_non_differentiable_view(
Variable base,
const at::Tensor& data,
bool allow_tensor_metadata_change = true) {
if (data.defined()) {
// Currently all of non-differentiable view ops(detach/_indices/_values)
// share the same TensorImpl as their base Tensor. Thus a new TensorImpl
// allocation here is required.
auto data_impl_copy = data.getIntrusivePtr()->shallow_copy_and_detach(
/*version_counter=*/impl::version_counter(base),
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
data_impl_copy->set_autograd_meta(nullptr);
return Variable(data_impl_copy);
}
return Variable();
}
/// Creates a `Variable` from the given `Tensor`, copying its underlying `TensorImpl`.
/// `requires_grad` should be
/// set only for leaves, and determines whether the `Variable` will accumulate
/// gradients. NOTE: `data` must *not* be a `Variable` already. Its dynamic
/// type *must* be `Tensor`.
///
/// TODO: Eliminate this function as much as possible, as it can be expressed
/// more clearly as detach() or a no-op in most call sites (especially when
/// there is only one use of the variable).
inline Variable make_variable(
at::Tensor data,
bool requires_grad = false,
bool allow_tensor_metadata_change = true) {
if (data.defined()) {
if (data.getIntrusivePtr().use_count() == 1 && data.getIntrusivePtr()->unique_version()) {
auto data_impl = data.unsafeReleaseIntrusivePtr();
data_impl->set_allow_tensor_metadata_change(allow_tensor_metadata_change);
if (requires_grad) {
data_impl->set_autograd_meta(std::make_unique<AutogradMeta>(data_impl.get(), requires_grad));
} else {
data_impl->set_autograd_meta(nullptr);
}
return Variable(std::move(data_impl));
} else {
auto data_impl_copy = data.getIntrusivePtr()->shallow_copy_and_detach(
/*version_counter=*/0,
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
if (requires_grad) {
data_impl_copy->set_autograd_meta(std::make_unique<AutogradMeta>(
data_impl_copy.get(), requires_grad));
} else {
data_impl_copy->set_autograd_meta(nullptr);
}
return Variable(data_impl_copy);
}
}
return Variable();
}
/// Creates a `Variable` from the given `Tensor`, copying its underlying `TensorImpl`.
/// `gradient_edge` should be a (function, input_nr) pair specifying the function
/// in the autograd graph, and what particular input of that function, this
/// variable is connected to.
inline Variable make_variable(
at::Tensor data,
Edge gradient_edge,
bool allow_tensor_metadata_change = true) {
if (data.defined()) {
auto data_impl_copy = data.getIntrusivePtr()->shallow_copy_and_detach(
/*version_counter=*/0,
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
data_impl_copy->set_autograd_meta(std::make_unique<AutogradMeta>(
data_impl_copy.get(), false, std::move(gradient_edge)));
return Variable(data_impl_copy);
}
return Variable();
}
}} // namespace torch::autograd
#endif /* DOXYGEN_SHOULD_SKIP_THIS */