Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

neilisaac / torch   python

Repository URL to install this package:

Version: 1.8.0 

/ jit / frontend.py

import torch
import sys
import ast
import inspect
import string
from textwrap import dedent
from typing import List
from torch._C._jit_tree_views import (
    ClassDef, Ident, Stmt, Decl, Def, Var,
    EmptyTypeAnnotation, Param, ExprStmt, Assign,
    Delete, Return, Raise, Assert, AugAssign, While,
    For, If, Pass, Break, Continue, Apply, Dots, Select,
    TrueLiteral, FalseLiteral, NoneLiteral, Starred,
    ListLiteral, TupleLiteral, DictLiteral, Const,
    StringLiteral, ListComp, Attribute, BinOp, UnaryOp,
    SliceExpr, Subscript, TernaryIf, With, WithItem, Property,
    DictComp,
)
from torch._utils_internal import get_source_lines_and_file

from torch._jit_internal import SourceContext, should_drop, is_static_fn
import torch.jit.annotations

# Borrowed from cPython implementation
# https://github.com/python/cpython/blob/561612d8456cfab5672c9b445521113b847bd6b3/Lib/textwrap.py#L411#

_reserved_prefix = '__jit'
_reserved_names = {'print'}
_identifier_chars = set(string.ascii_lowercase + string.ascii_uppercase + string.digits)


def is_reserved_name(name):
    return name.startswith(_reserved_prefix) or name in _reserved_names


pretty_node_names = {
    ast.FunctionDef: "function definitions",
    ast.For: "for loops",
    ast.Delete: "del statements",
    ast.ClassDef: "class definitions",
    ast.With: "with statements",
    ast.Raise: "raise statements",
    ast.Assert: "assertions",
    ast.Import: "import statements",
    ast.ImportFrom: "import statements",
    ast.Global: "global variables",
    ast.Break: "break statements",
    ast.Continue: "continue statements",
}

node_start_tokens = {
    ast.FunctionDef: "def",
    ast.For: "for",
    ast.Delete: "del",
    ast.ClassDef: "class",
    ast.With: "with",
    ast.Raise: "raise",
    ast.Assert: "assert",
    ast.Import: "import",
    ast.ImportFrom: "from",
    ast.Global: "global",
    ast.Break: "break",
    ast.Continue: "continue",
}

pretty_node_names.update({
    ast.AsyncFunctionDef: "async function definitions",
    ast.AsyncFor: "async for loops",
    ast.AsyncWith: "async with statements",
    ast.Try: "try blocks",
    ast.Nonlocal: "nonlocal variables",
})

node_start_tokens.update({
    ast.AsyncFunctionDef: "async def",
    ast.AsyncFor: "async for",
    ast.AsyncWith: "async with",
    ast.Try: "try",
    ast.Nonlocal: "nonlocal",
})

if sys.version_info >= (3, 6):
    pretty_node_names.update({
        ast.AnnAssign: "annotated assignments",
    })
    # NB: no specific token for AnnAssign


class FrontendError(Exception):
    def __init__(self, source_range, msg):
        self.source_range = source_range
        self.msg = msg

        # This has to be instantiated here so the ErrorReport is accurate to the
        # call stack when the FrontendError was raised
        self.error_report = torch._C.ErrorReport(self.source_range)

    def __str__(self):
        return self.msg + self.error_report.what().lstrip()


class NotSupportedError(FrontendError):
    pass


class UnsupportedNodeError(NotSupportedError):
    def __init__(self, ctx, offending_node, reason=''):
        # If we don't have a specific token, we default to length of 1
        node_type = type(offending_node)
        range_len = len(node_start_tokens.get(node_type, ' '))
        source_range = ctx.make_range(offending_node.lineno,
                                      offending_node.col_offset,
                                      offending_node.col_offset + range_len)
        feature_name = pretty_node_names.get(node_type, node_type.__name__)
        msg = "{} {}aren't supported".format(feature_name, reason + ' ' if reason else '')
        super(UnsupportedNodeError, self).__init__(source_range, msg)


class FrontendTypeError(FrontendError):
    pass


def build_withitems(ctx, items):
    items = [build_withitem(ctx, i) for i in items]
    return list(items)


def build_stmts(ctx, stmts):
    stmts = [build_stmt(ctx, s) for s in stmts]
    return list(filter(None, stmts))


def get_class_properties(cls, self_name):
    """
    Get a list of Property objects representing the properties of a class.

    Args:
        cls:  The class to get properties of.
        self_name: The name of the class that the properties should belong to.
    Returns:
        A list of Property objects corresponding to the properties of cls. Property
        here refers to the subclass of TreeView.
    """
    props = inspect.getmembers(
        cls, predicate=lambda m: isinstance(m, property))
    # Any property that should not compiled must be in this list on the Module.
    unused_properties = getattr(cls, "__jit_unused_properties__", [])

    # Create Property TreeView objects from inspected property objects.
    properties = []
    for prop in props:
        if prop[0] not in unused_properties and not should_drop(prop[1].fget):
            getter = get_jit_def(prop[1].fget, f"__{prop[0]}_getter", self_name=self_name)
            setter = get_jit_def(prop[1].fset, f"__{prop[0]}_setter", self_name=self_name) if prop[1].fset else None
            properties.append(Property(getter.range(), Ident(getter.range(), prop[0]), getter, setter))

    return properties


def get_jit_class_def(cls, self_name):
    # Get defs for each method within the current class independently
    # TODO: proper overriding analysis when implementing class inheritance
    methods = inspect.getmembers(
        cls,
        predicate=lambda m: (inspect.ismethod(m) or inspect.isfunction(m))
        and not is_static_fn(cls, m.__name__)
        and m.__name__ in cls.__dict__
    )

    def is_classmethod(fn):
        return inspect.ismethod(fn) and getattr(fn, "__self__", None) == cls

    methods = [get_jit_def(method[1],
                           method[0],
                           self_name=self_name,
                           is_classmethod=is_classmethod(method[1])) for method in methods]

    properties = get_class_properties(cls, self_name)

    sourcelines, file_lineno, filename = get_source_lines_and_file(cls, torch._C.ErrorReport.call_stack())
    source = ''.join(sourcelines)
    dedent_src = dedent(source)
    py_ast = ast.parse(dedent_src)
    leading_whitespace_len = len(source.split('\n', 1)[0]) - len(dedent_src.split('\n', 1)[0])
    ctx = SourceContext(source, filename, file_lineno, leading_whitespace_len, False)
    return build_class_def(ctx, py_ast.body[0], methods, properties, self_name)


def normalize_source_lines(sourcelines: List[str]) -> List[str]:
    """
    This helper function accepts a list of source lines. It finds the
    indentation level of the function definition (`def`), then it indents
    all lines in the function body to a point at or greater than that
    level. This allows for comments and continued string literals that
    are at a lower indentation than the rest of the code.
    Args:
        sourcelines: function source code, separated into lines by
                        the '\n' character
    Returns:
        A list of source lines that have been correctly aligned
    """

    def remove_prefix(text, prefix):
        return text[text.startswith(prefix) and len(prefix):]

    # Find the line and line number containing the function definition
    for i, l in enumerate(sourcelines):
        if l.lstrip().startswith("def"):
            idx = i
            break
    fn_def = sourcelines[idx]

    # Get a string representing the amount of leading whitespace
    whitespace = fn_def.split("def")[0]

    # Add this leading whitespace to all lines before and after the `def`
    aligned_prefix = [whitespace + remove_prefix(s, whitespace) for s in sourcelines[:idx]]
    aligned_suffix = [whitespace + remove_prefix(s, whitespace) for s in sourcelines[idx + 1:]]

    # Put it together again
    aligned_prefix.append(fn_def)
    return aligned_prefix + aligned_suffix


def get_jit_def(fn, def_name, self_name=None, is_classmethod=False):
    """
    Build a JIT AST (TreeView) from the given function.

    Args:
        fn: A function object to compile
        def_name: The name to give to the resulting AST object. This is not
            always the same as `fn.__name__`, for example:
                def _forward(self):
                    ...
                forward = _forward
            In this case, the `__name__` attribute of the function object is "_forward",
            but we want the result AST to have the name "forward".
        self_name: If this function is a method, what the type name of `self` is.
    """
    sourcelines, file_lineno, filename = get_source_lines_and_file(fn, torch._C.ErrorReport.call_stack())
    sourcelines = normalize_source_lines(sourcelines)
    source = ''.join(sourcelines)
    dedent_src = dedent(source)
    py_ast = ast.parse(dedent_src)
    if len(py_ast.body) != 1 or not isinstance(py_ast.body[0], ast.FunctionDef):
        raise RuntimeError(f"Expected a single top-level function: {filename}:{file_lineno}")
    leading_whitespace_len = len(source.split('\n', 1)[0]) - len(dedent_src.split('\n', 1)[0])
    type_line = torch.jit.annotations.get_type_line(source)
    ctx = SourceContext(source, filename, file_lineno, leading_whitespace_len, True)
    fn_def = py_ast.body[0]

    if is_classmethod:
        arg_name = fn_def.args.args[0].arg
        # Insert a statement that assigns the first argument to the class
        assign_stmt = ast.parse(f"{arg_name} = {self_name}").body[0]
        fn_def.body.insert(0, assign_stmt)

    # Swap out the function signature and body if it is unused
    if should_drop(fn):
        unused_fn_def = ast.parse("def unused_fn(self: Any):\n\traise RuntimeError(\"Cannot call @unused methods\")")
        if len(unused_fn_def.body) != 1 or not isinstance(unused_fn_def.body[0], ast.FunctionDef):
            raise RuntimeError(f"Expected a single top-level function: {filename}:{file_lineno}")
        unused_def = unused_fn_def.body[0]
        fn_def.body = unused_def.body
        # kwarg/vararg not supported by `build_def`
        fn_def.args.kwarg = fn_def.args.vararg = None
        for arg in fn_def.args.args + fn_def.args.kwonlyargs:
            # Replace potentially unsupported type annotations by "Any"
            arg.annotation = unused_def.args.args[0].annotation

    return build_def(ctx, fn_def, type_line, def_name, self_name=self_name)


class Builder(object):
    def __call__(self, ctx, node):
        method = getattr(self, 'build_' + node.__class__.__name__, None)
        if method is None:
            raise UnsupportedNodeError(ctx, node)
        return method(ctx, node)


def build_class_def(ctx, py_def, methods, properties, self_name):
    r = ctx.make_range(py_def.lineno, py_def.col_offset,
                       py_def.col_offset + len("class"))
    return ClassDef(Ident(r, self_name), [Stmt(method) for method in methods], properties)


def build_def(ctx, py_def, type_line, def_name, self_name=None):
    body = py_def.body
    r = ctx.make_range(py_def.lineno + len(py_def.decorator_list),
                       py_def.col_offset,
                       py_def.col_offset + len("def"))
    param_list = build_param_list(ctx, py_def.args, self_name)
    return_type = None
    if getattr(py_def, 'returns', None) is not None:
        return_type = build_expr(ctx, py_def.returns)
    decl = Decl(r, param_list, return_type)
    is_method = self_name is not None
    if type_line is not None:
        type_comment_decl = torch._C.parse_type_comment(type_line)
        decl = torch._C.merge_type_from_type_comment(decl, type_comment_decl, is_method)

    return Def(Ident(r, def_name),
               decl,
               build_stmts(ctx, body))


_vararg_kwarg_err = ("Compiled functions can't take variable number of arguments "
                     "or use keyword-only arguments with defaults")


def build_param_list(ctx, py_args, self_name):
    if py_args.kwarg is not None:
        expr = py_args.kwarg
        ctx_range = ctx.make_range(expr.lineno, expr.col_offset - 1, expr.col_offset + len(expr.arg))
        raise NotSupportedError(ctx_range, _vararg_kwarg_err)
    if py_args.vararg is not None:
        expr = py_args.vararg
        ctx_range = ctx.make_range(expr.lineno, expr.col_offset - 1, expr.col_offset + len(expr.arg))
        raise NotSupportedError(ctx_range, _vararg_kwarg_err)
    if len(py_args.kw_defaults) > 0:
        # kw_defaults is a list of the values for the kwargs (which default to None),
        # so they don't actually have line numbers.
        for arg in py_args.kw_defaults:
            if arg is not None:
                ctx_range = build_expr(ctx, arg).range()
                raise NotSupportedError(ctx_range, _vararg_kwarg_err)
    result = [build_param(ctx, arg, self_name, False) for arg in py_args.args]
    result += [build_param(ctx, arg, self_name, True) for arg in py_args.kwonlyargs]
    return result


def build_param(ctx, py_arg, self_name, kwarg_only):
    # NB: In Python3 py_arg is a pair of (str arg, expr? annotation)
    name = py_arg.arg
    r = ctx.make_range(py_arg.lineno, py_arg.col_offset, py_arg.col_offset + len(name))
    if getattr(py_arg, 'annotation', None) is not None:
        annotation_expr = build_expr(ctx, py_arg.annotation)
    elif self_name is not None and name == 'self':
        annotation_expr = Var(Ident(r, self_name))
    else:
        annotation_expr = EmptyTypeAnnotation(r)
    return Param(annotation_expr, Ident(r, name), kwarg_only)

Loading ...