import torch.jit
from torch.jit._builtins import _find_builtin
import inspect
import textwrap
# this file is for generating documentation using sphinx autodoc
# > help(torch.jit.supported_ops) will also give a nice listed of the
# supported ops programmatically
def _hidden(name):
return name.startswith('_') and not name.startswith('__')
def _emit_type(type):
return str(type)
def _emit_arg(indent, i, arg):
v = "{} : {}".format(arg.name, _emit_type(arg.type))
default = arg.default_value
if default is not None:
v = "{}={}".format(v, str(default))
if i > 0:
v = "\n{}{}".format(" " * indent, v)
return v
def _emit_args(indent, arguments):
return ",".join(_emit_arg(indent, i, arg) for i, arg in enumerate(arguments))
def _emit_ret(ret):
return _emit_type(ret.type)
def _emit_rets(returns):
if len(returns) == 1:
return _emit_ret(returns[0])
return "Tuple[{}]".format(", ".join(_emit_ret(r) for r in returns))
def _emit_schema(mod, name, schema, arg_start=0, padding=4):
if mod is None:
qualified_name = name
else:
qualified_name = "{}.{}".format(mod, name)
schema_str = "{}({}) -> {}".format(qualified_name,
_emit_args(len(qualified_name) + 1 + padding, schema.arguments[arg_start:]),
_emit_rets(schema.returns))
return schema_str
def _get_tensor_ops():
def is_tensor_method(schema):
if len(schema.arguments) == 0:
return False
self = schema.arguments[0]
if self.name != 'self':
return False
if not self.type.isSubtypeOf(torch._C.TensorType.get()):
return False
return True
methods = []
# discover methods
for elem in dir(torch.Tensor):
if not _hidden(elem):
schemas = torch._C._jit_get_schemas_for_operator("aten::" + elem)
for schema in schemas:
if is_tensor_method(schema):
methods.append(_emit_schema('Tensor', elem, schema, arg_start=1))
return "Supported Tensor Methods", methods
def _get_nn_functional_ops():
functions = []
# Iterate over torch.nn.functional
mod = torch.nn.functional
name = mod.__name__
for elem in dir(torch.nn.functional):
attr = getattr(mod, elem)
if not inspect.isfunction(attr) or _hidden(elem[0]):
# Ignore non-functions and internal methods
continue
attr_module = inspect.getmodule(attr)
if not attr_module:
raise RuntimeError(f'Module for {attr} not found')
if 'torch.nn.functional' not in attr_module.__name__:
# Ignore functions from outside torch.nn.functional
continue
try:
# compile fn, get schema
scripted = torch.jit.script(attr)
schema = scripted.schema
functions.append(_emit_schema(name, elem, schema))
except: # noqa
# Skip interpolate / boolean dispatched things
pass
# Iterate over modules that we know contain a lot of builtins
for mod in torch.jit._builtins._modules_containing_builtins:
name = mod.__name__
for elem in dir(mod):
builtin = _find_builtin(getattr(mod, elem))
if builtin is not None:
schemas = torch._C._jit_get_schemas_for_operator(builtin)
for schema in schemas:
# remove _tan but not __and__
if not _hidden(elem):
functions.append(_emit_schema(name, elem, schema))
return "Supported PyTorch Functions", functions
def _get_builtins_helper():
builtins = []
for fn, _builtin_name in torch.jit._builtins._builtin_ops:
mod = inspect.getmodule(fn)
if not hasattr(fn, '__name__'):
# typing classes
continue
if not mod:
continue
if _hidden(fn.__name__) or _hidden(fn.__qualname__) or _hidden(mod.__name__):
# skip internal-only methods
continue
if 'torch._C' in mod.__name__:
continue
builtins.append((fn, _builtin_name))
return builtins
def _is_math_fn(fn):
mod = inspect.getmodule(fn)
if not mod:
raise RuntimeError(f'Module for {fn} not found')
return mod.__name__ == 'math'
def _get_torchscript_builtins():
functions = []
builtins = filter(lambda fn: not _is_math_fn(fn[0]), _get_builtins_helper())
builtins_list = list(builtins)
# Iterate over the specially added builtins
for fn, _builtin_name in builtins_list:
mod = inspect.getmodule(fn)
if not mod:
raise RuntimeError(f'Module for {fn} not found')
builtin = _find_builtin(fn)
if builtin is not None:
schemas = torch._C._jit_get_schemas_for_operator(builtin)
for schema in schemas:
functions.append(_emit_schema(mod.__name__, fn.__name__, schema))
pass
return "TorchScript Builtin Functions", functions
def _get_math_builtins():
functions = []
builtins = filter(lambda fn: _is_math_fn(fn[0]), _get_builtins_helper())
builtins_list = list(builtins)
# Iterate over the specially added builtins
for fn, _builtin_name in builtins_list:
mod = inspect.getmodule(fn)
if not mod:
raise RuntimeError(f'Module for {fn} not found')
builtin = _find_builtin(fn)
if builtin is not None:
schemas = torch._C._jit_get_schemas_for_operator(builtin)
for schema in schemas:
schema_str = _emit_schema(mod.__name__, fn.__name__, schema)
if 'Tensor' in schema_str:
# Skip Tensor ops that have the same name as math functions
# (they will show up in the tensor methods section)
continue
functions.append(schema)
pass
return "``math`` Module", functions
def _get_global_builtins():
# Taken from the 'globals' map in torch/csrc/jit/frontend/ir_emitter.cpp
supported_builtins = [
'print',
'tuple',
'float',
'int',
'bool',
'str',
'getattr',
'hasattr',
'isinstance',
'len',
'hex',
'oct',
'round',
'hash',
'min',
'max',
'abs',
'all',
'divmod',
'list',
'ord',
'chr',
'bin',
'range',
'zip',
'enumerate',
'sorted',
]
op_renames = {
'bool': 'aten::Bool',
'int': 'aten::Int',
'float': 'aten::Float',
'abs': 'prim::abs',
'max': 'prim::max',
'min': 'prim::min',
'range': 'fake::does_not_exist',
}
schemaless_op_explanations = {
'print': 'Print any value',
'tuple': 'Lists cannot be converted to tuples with this method since their size is not statically known',
'getattr': 'Attribute name must be a literal string',
'hasattr': 'Attribute name must be a literal string',
'isinstance': 'Result is static',
'zip': 'Arguments must be iterable. See :ref:`Iterables <jit_iterables>` for details.',
'enumerate': 'Arguments must be iterable. See :ref:`Iterables <jit_iterables>` for details.',
'range': 'Can only be used as an iterator in a for loop',
}
magic_methods = [
('float', '__float__'),
('int', '__int__'),
('bool', '__bool__'),
('str', '__str__'),
('len', '__len__'),
('hex', '__hex__'),
('oct', '__oct__'),
]
magic_methods_rows = []
for fn, magic_method in magic_methods:
magic_methods_rows.append('"{}", "``{}``"'.format(fn, magic_method))
schematized_ops = []
schemaless_ops = []
for fn in supported_builtins:
op_name = 'aten::{}'.format(fn)
if fn in op_renames:
op_name = op_renames[fn]
schemas = torch._C._jit_get_schemas_for_operator(op_name)
for s in schemas:
schematized_ops.append(_emit_schema(None, fn, s, padding=0))
if len(schemas) > 0:
schematized_ops.append('')
else:
table_row = '":any:`{}`", "{}"'.format(fn, schemaless_op_explanations[fn])
schemaless_ops.append(table_row)
schematized_ops_str = '\n'.join(schematized_ops)
schemaless_ops_str = '\n'.join(schemaless_ops)
magic_methods_rows_str = '\n'.join(magic_methods_rows)
schematized_ops_str = textwrap.indent(schematized_ops_str, '\t')
schemaless_ops_str = textwrap.indent(schemaless_ops_str, '\t')
magic_methods_rows_str = textwrap.indent(magic_methods_rows_str, '\t')
section = """
The functions in the following table are supported but do not have a static schema
.. csv-table::
:header: "Function", "Note"
{}
The following functions will use the corresponding magic method on :any:`TorchScript classes`
.. csv-table::
:header: "Function", "Magic Method"
{}
These built-in functions use the schema
.. rst-class:: codeblock-height-limiter
::
{}
""".format(schemaless_ops_str, magic_methods_rows_str, schematized_ops_str)
return "Python Built-in Functions", section
def _list_supported_ops():
def emit_block(decls):
return '\n.. rst-class:: codeblock-height-limiter\n\n::\n\n{}\n'.format(''.join(' {}\n\n'.format(d) for d in decls))
body = ''
op_gathering_fns = (
_get_tensor_ops,
_get_nn_functional_ops,
_get_torchscript_builtins,
_get_global_builtins,
_get_math_builtins,
)
for fn in op_gathering_fns:
header, items = fn()
link_target = header.replace('`', '').replace('-', '').lower().replace(' ', '-')
if isinstance(items, str):
section = "{}\n{}\n{}\n".format(header, '~' * len(header), items)
else:
section = "{}\n{}\n{}".format(header, '~' * len(header), emit_block(items))
section = '.. _{}:'.format(link_target) + '\n\n' + section
body += section
return body
__doc__ = _list_supported_ops()