Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

neilisaac / torch   python

Repository URL to install this package:

Version: 1.8.0 

/ nn / functional.py

r"""Functional interface"""
from typing import Callable, List, Optional, Tuple
import math
import warnings

import torch
from torch import _VF
from torch._C import _infer_size, _add_docstr
from torch._torch_docs import reproducibility_notes, tf32_notes

from .._jit_internal import boolean_dispatch, _overload
from ..overrides import (
    has_torch_function, has_torch_function_unary, has_torch_function_variadic,
    handle_torch_function)
from . import _reduction as _Reduction
from . import grad  # noqa: F401
from .modules import utils
from .modules.utils import _single, _pair, _triple, _list_with_default


Tensor = torch.Tensor

conv1d = _add_docstr(
    torch.conv1d,
    r"""
conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor

Applies a 1D convolution over an input signal composed of several input
planes.

{tf32_note}

See :class:`~torch.nn.Conv1d` for details and output shape.

Note:
    {cudnn_reproducibility_note}
""".format(
        **reproducibility_notes, **tf32_notes
    )
    + r"""

Args:
    input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`
    weight: filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kW)`
    bias: optional bias of shape :math:`(\text{out\_channels})`. Default: ``None``
    stride: the stride of the convolving kernel. Can be a single number or
      a one-element tuple `(sW,)`. Default: 1
    padding: implicit paddings on both sides of the input. Can be a
      single number or a one-element tuple `(padW,)`. Default: 0
    dilation: the spacing between kernel elements. Can be a single number or
      a one-element tuple `(dW,)`. Default: 1
    groups: split input into groups, :math:`\text{in\_channels}` should be divisible by
      the number of groups. Default: 1

Examples::

    >>> filters = torch.randn(33, 16, 3)
    >>> inputs = torch.randn(20, 16, 50)
    >>> F.conv1d(inputs, filters)
""",
)

conv2d = _add_docstr(
    torch.conv2d,
    r"""
conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor

Applies a 2D convolution over an input image composed of several input
planes.

{tf32_note}

See :class:`~torch.nn.Conv2d` for details and output shape.

Note:
    {cudnn_reproducibility_note}
""".format(
        **reproducibility_notes, **tf32_notes
    )
    + r"""
Args:
    input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
    weight: filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kH , kW)`
    bias: optional bias tensor of shape :math:`(\text{out\_channels})`. Default: ``None``
    stride: the stride of the convolving kernel. Can be a single number or a
      tuple `(sH, sW)`. Default: 1
    padding: implicit paddings on both sides of the input. Can be a
      single number or a tuple `(padH, padW)`. Default: 0
    dilation: the spacing between kernel elements. Can be a single number or
      a tuple `(dH, dW)`. Default: 1
    groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the
      number of groups. Default: 1

Examples::

    >>> # With square kernels and equal stride
    >>> filters = torch.randn(8,4,3,3)
    >>> inputs = torch.randn(1,4,5,5)
    >>> F.conv2d(inputs, filters, padding=1)
""",
)  # noqa: E501

conv3d = _add_docstr(
    torch.conv3d,
    r"""
conv3d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor

Applies a 3D convolution over an input image composed of several input
planes.

{tf32_note}

See :class:`~torch.nn.Conv3d` for details and output shape.

Note:
    {cudnn_reproducibility_note}
""".format(
        **reproducibility_notes, **tf32_notes
    )
    + r"""

Args:
    input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iT , iH , iW)`
    weight: filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kT , kH , kW)`
    bias: optional bias tensor of shape :math:`(\text{out\_channels})`. Default: None
    stride: the stride of the convolving kernel. Can be a single number or a
      tuple `(sT, sH, sW)`. Default: 1
    padding: implicit paddings on both sides of the input. Can be a
      single number or a tuple `(padT, padH, padW)`. Default: 0
    dilation: the spacing between kernel elements. Can be a single number or
      a tuple `(dT, dH, dW)`. Default: 1
    groups: split input into groups, :math:`\text{in\_channels}` should be divisible by
      the number of groups. Default: 1

Examples::

    >>> filters = torch.randn(33, 16, 3, 3, 3)
    >>> inputs = torch.randn(20, 16, 50, 10, 20)
    >>> F.conv3d(inputs, filters)
""",
)  # noqa: E501

conv_transpose1d = _add_docstr(
    torch.conv_transpose1d,
    r"""
conv_transpose1d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor

Applies a 1D transposed convolution operator over an input signal
composed of several input planes, sometimes also called "deconvolution".

{tf32_note}

See :class:`~torch.nn.ConvTranspose1d` for details and output shape.

Note:
    {cudnn_reproducibility_note}
""".format(
        **reproducibility_notes, **tf32_notes
    )
    + r"""

Args:
    input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`
    weight: filters of shape :math:`(\text{in\_channels} , \frac{\text{out\_channels}}{\text{groups}} , kW)`
    bias: optional bias of shape :math:`(\text{out\_channels})`. Default: None
    stride: the stride of the convolving kernel. Can be a single number or a
      tuple ``(sW,)``. Default: 1
    padding: ``dilation * (kernel_size - 1) - padding`` zero-padding will be added to both
      sides of each dimension in the input. Can be a single number or a tuple
      ``(padW,)``. Default: 0
    output_padding: additional size added to one side of each dimension in the
      output shape. Can be a single number or a tuple ``(out_padW)``. Default: 0
    groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the
      number of groups. Default: 1
    dilation: the spacing between kernel elements. Can be a single number or
      a tuple ``(dW,)``. Default: 1

Examples::

    >>> inputs = torch.randn(20, 16, 50)
    >>> weights = torch.randn(16, 33, 5)
    >>> F.conv_transpose1d(inputs, weights)
""",
)

conv_transpose2d = _add_docstr(
    torch.conv_transpose2d,
    r"""
conv_transpose2d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor

Applies a 2D transposed convolution operator over an input image
composed of several input planes, sometimes also called "deconvolution".

{tf32_note}

See :class:`~torch.nn.ConvTranspose2d` for details and output shape.

Note:
    {cudnn_reproducibility_note}
""".format(
        **reproducibility_notes, **tf32_notes
    )
    + r"""

Args:
    input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
    weight: filters of shape :math:`(\text{in\_channels} , \frac{\text{out\_channels}}{\text{groups}} , kH , kW)`
    bias: optional bias of shape :math:`(\text{out\_channels})`. Default: None
    stride: the stride of the convolving kernel. Can be a single number or a
      tuple ``(sH, sW)``. Default: 1
    padding: ``dilation * (kernel_size - 1) - padding`` zero-padding will be added to both
      sides of each dimension in the input. Can be a single number or a tuple
      ``(padH, padW)``. Default: 0
    output_padding: additional size added to one side of each dimension in the
      output shape. Can be a single number or a tuple ``(out_padH, out_padW)``.
      Default: 0
    groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the
      number of groups. Default: 1
    dilation: the spacing between kernel elements. Can be a single number or
      a tuple ``(dH, dW)``. Default: 1

Examples::

    >>> # With square kernels and equal stride
    >>> inputs = torch.randn(1, 4, 5, 5)
    >>> weights = torch.randn(4, 8, 3, 3)
    >>> F.conv_transpose2d(inputs, weights, padding=1)
""",
)  # noqa: E501

conv_transpose3d = _add_docstr(
    torch.conv_transpose3d,
    r"""
conv_transpose3d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor

Applies a 3D transposed convolution operator over an input image
composed of several input planes, sometimes also called "deconvolution"

{tf32_note}

See :class:`~torch.nn.ConvTranspose3d` for details and output shape.

Note:
    {cudnn_reproducibility_note}
""".format(
        **reproducibility_notes, **tf32_notes
    )
    + r"""

Args:
    input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iT , iH , iW)`
    weight: filters of shape :math:`(\text{in\_channels} , \frac{\text{out\_channels}}{\text{groups}} , kT , kH , kW)`
    bias: optional bias of shape :math:`(\text{out\_channels})`. Default: None
    stride: the stride of the convolving kernel. Can be a single number or a
      tuple ``(sT, sH, sW)``. Default: 1
    padding: ``dilation * (kernel_size - 1) - padding`` zero-padding will be added to both
      sides of each dimension in the input. Can be a single number or a tuple
      ``(padT, padH, padW)``. Default: 0
    output_padding: additional size added to one side of each dimension in the
      output shape. Can be a single number or a tuple
      ``(out_padT, out_padH, out_padW)``. Default: 0
    groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the
      number of groups. Default: 1
    dilation: the spacing between kernel elements. Can be a single number or
      a tuple `(dT, dH, dW)`. Default: 1

Examples::

    >>> inputs = torch.randn(20, 16, 50, 10, 20)
    >>> weights = torch.randn(16, 33, 3, 3, 3)
    >>> F.conv_transpose3d(inputs, weights)
""",
)  # noqa: E501

conv_tbc = _add_docstr(
    torch.conv_tbc,
    r"""
Applies a 1-dimensional sequence convolution over an input sequence.
Input and output dimensions are (Time, Batch, Channels) - hence TBC.

Args:
    input: input tensor of shape :math:`(\text{sequence length} \times batch \times \text{in\_channels})`
    weight: filter of shape (:math:`\text{kernel width} \times \text{in\_channels} \times \text{out\_channels}`)
    bias: bias of shape (:math:`\text{out\_channels}`)
    pad: number of timesteps to pad. Default: 0
""",
)


# Pooling
avg_pool1d = _add_docstr(
    torch.avg_pool1d,
    r"""
avg_pool1d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True) -> Tensor

Applies a 1D average pooling over an input signal composed of several
input planes.

See :class:`~torch.nn.AvgPool1d` for details and output shape.

Args:
    input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`
    kernel_size: the size of the window. Can be a single number or a
      tuple `(kW,)`
    stride: the stride of the window. Can be a single number or a tuple
      `(sW,)`. Default: :attr:`kernel_size`
    padding: implicit zero paddings on both sides of the input. Can be a
      single number or a tuple `(padW,)`. Default: 0
    ceil_mode: when True, will use `ceil` instead of `floor` to compute the
        output shape. Default: ``False``
    count_include_pad: when True, will include the zero-padding in the
        averaging calculation. Default: ``True``

Examples::

    >>> # pool of square window of size=3, stride=2
    >>> input = torch.tensor([[[1, 2, 3, 4, 5, 6, 7]]], dtype=torch.float32)
    >>> F.avg_pool1d(input, kernel_size=3, stride=2)
    tensor([[[ 2.,  4.,  6.]]])

""",
)


avg_pool2d = _add_docstr(
    torch._C._nn.avg_pool2d,
    r"""
avg_pool2d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None) -> Tensor

Applies 2D average-pooling operation in :math:`kH \times kW` regions by step size
:math:`sH \times sW` steps. The number of output features is equal to the number of
input planes.

See :class:`~torch.nn.AvgPool2d` for details and output shape.

Args:
    input: input tensor :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
    kernel_size: size of the pooling region. Can be a single number or a
      tuple `(kH, kW)`
    stride: stride of the pooling operation. Can be a single number or a
      tuple `(sH, sW)`. Default: :attr:`kernel_size`
    padding: implicit zero paddings on both sides of the input. Can be a
      single number or a tuple `(padH, padW)`. Default: 0
    ceil_mode: when True, will use `ceil` instead of `floor` in the formula
        to compute the output shape. Default: ``False``
Loading ...