import torch
import torch.nn.quantized.functional
class ReLU6(torch.nn.ReLU):
r"""Applies the element-wise function:
:math:`\text{ReLU6}(x) = \min(\max(x_0, x), q(6))`, where :math:`x_0` is the
zero_point, and :math:`q(6)` is the quantized representation of number 6.
Args:
inplace: can optionally do the operation in-place. Default: ``False``
Shape:
- Input: :math:`(N, *)` where `*` means, any number of additional
dimensions
- Output: :math:`(N, *)`, same shape as the input
.. image:: scripts/activation_images/ReLU6.png
Examples::
>>> m = nn.quantized.ReLU6()
>>> input = torch.randn(2)
>>> input = torch.quantize_per_tensor(input, 1.0, 0, dtype=torch.qint32)
>>> output = m(input)
"""
def __init__(self, inplace=False):
super(ReLU6, self).__init__(inplace)
self.inplace = inplace
def forward(self, input):
return torch.ops.quantized.relu6(input, self.inplace)
def _get_name(self):
return 'QuantizedReLU6'
@staticmethod
def from_float(mod):
return ReLU6(mod.inplace)
class Hardswish(torch.nn.Hardswish):
r"""This is the quantized version of :class:`~torch.nn.Hardswish`.
Args:
scale: quantization scale of the output tensor
zero_point: quantization zero point of the output tensor
"""
def __init__(self, scale, zero_point):
super(Hardswish, self).__init__()
self.scale = scale
self.zero_point = zero_point
def forward(self, input):
return torch.nn.quantized.functional.hardswish(
input, scale=self.scale, zero_point=self.zero_point)
def _get_name(self):
return 'QuantizedHardswish'
@staticmethod
def from_float(mod):
scale, zero_point = mod.activation_post_process.calculate_qparams()
return Hardswish(float(scale), int(zero_point))
class ELU(torch.nn.ELU):
r"""This is the quantized equivalent of :class:`~torch.nn.ELU`.
Args:
scale: quantization scale of the output tensor
zero_point: quantization zero point of the output tensor
alpha: the alpha constant
"""
def __init__(self, scale, zero_point, alpha=1.):
super(ELU, self).__init__(alpha)
self.scale = scale
self.zero_point = zero_point
def forward(self, input):
return torch.nn.quantized.functional.elu(
input, self.scale, self.zero_point, self.alpha)
def _get_name(self):
return 'QuantizedELU'
@staticmethod
def from_float(mod):
scale, zero_point = mod.activation_post_process.calculate_qparams()
return ELU(float(scale), int(zero_point), mod.alpha)
class LeakyReLU(torch.nn.LeakyReLU):
r"""This is the quantized equivalent of :class:`~torch.nn.LeakyReLU`.
Args:
scale: quantization scale of the output tensor
zero_point: quantization zero point of the output tensor
negative_slope: Controls the angle of the negative slope. Default: 1e-2
"""
def __init__(self, scale: float, zero_point: int, negative_slope: float = 1e-2, inplace: bool = False):
super().__init__(negative_slope, inplace)
self.register_buffer('scale', torch.tensor(scale))
self.register_buffer('zero_point', torch.tensor(zero_point))
def forward(self, input):
return torch.ops.quantized.leaky_relu(
input, self.negative_slope, self.inplace, self.scale, self.zero_point)
def _get_name(self):
return 'QuantizedLeakyReLU'
@classmethod
def from_float(cls, mod):
scale, zero_point = mod.activation_post_process.calculate_qparams()
return cls(float(scale), int(zero_point), mod.negative_slope, mod.inplace)
class Sigmoid(torch.nn.Sigmoid):
r"""This is the quantized equivalent of :class:`~torch.nn.Sigmoid`.
Args:
scale: quantization scale of the output tensor
zero_point: quantization zero point of the output tensor
"""
def __init__(self, output_scale: float, output_zero_point: int):
super().__init__()
self.output_scale = output_scale
self.output_zero_point = output_zero_point
def forward(self, input):
return torch.ops.quantized.sigmoid(input, self.output_scale, self.output_zero_point)
@classmethod
def from_float(cls, mod):
output_scale, output_zero_point = mod.activation_post_process.calculate_qparams()
return cls(float(output_scale), int(output_zero_point))