Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

neilisaac / torch   python

Repository URL to install this package:

Version: 1.8.0 

/ nn / quantized / modules / functional_modules.py

from typing import List

import torch
from torch import Tensor
from torch._ops import ops

class FloatFunctional(torch.nn.Module):
    r"""State collector class for float operations.

    The instance of this class can be used instead of the ``torch.`` prefix for
    some operations. See example usage below.

    .. note::

        This class does not provide a ``forward`` hook. Instead, you must use
        one of the underlying functions (e.g. ``add``).

    Examples::

        >>> f_add = FloatFunctional()
        >>> a = torch.tensor(3.0)
        >>> b = torch.tensor(4.0)
        >>> f_add.add(a, b)  # Equivalent to ``torch.add(a, b)``

    Valid operation names:
        - add
        - cat
        - mul
        - add_relu
        - add_scalar
        - mul_scalar
    """
    def __init__(self):
        super(FloatFunctional, self).__init__()
        self.activation_post_process = torch.nn.Identity()

    def forward(self, x):
        raise RuntimeError("FloatFunctional is not intended to use the " +
                           "'forward'. Please use the underlying operation")

    r"""Operation equivalent to ``torch.add(Tensor, Tensor)``"""
    def add(self, x: Tensor, y: Tensor) -> Tensor:
        r = torch.add(x, y)
        r = self.activation_post_process(r)
        return r

    r"""Operation equivalent to ``torch.add(Tensor, float)``"""
    def add_scalar(self, x: Tensor, y: float) -> Tensor:
        r = torch.add(x, y)
        # Note: this operation is not observed because the observation is not
        # needed for the quantized op.
        return r

    r"""Operation equivalent to ``torch.mul(Tensor, Tensor)``"""
    def mul(self, x: Tensor, y: Tensor) -> Tensor:
        r = torch.mul(x, y)
        r = self.activation_post_process(r)
        return r

    r"""Operation equivalent to ``torch.mul(Tensor, float)``"""
    def mul_scalar(self, x: Tensor, y: float) -> Tensor:
        r = torch.mul(x, y)
        # Note: this operation is not observed because the observation is not
        # needed for the quantized op.
        return r

    r"""Operation equivalent to ``torch.cat``"""
    def cat(self, x: List[Tensor], dim: int = 0) -> Tensor:
        r = torch.cat(x, dim=dim)
        r = self.activation_post_process(r)
        return r

    r"""Operation equivalent to ``relu(torch.add(x,y))``"""
    def add_relu(self, x: Tensor, y: Tensor) -> Tensor:
        r = torch.add(x, y)
        r = torch.nn.functional.relu(r)
        r = self.activation_post_process(r)
        return r

class FXFloatFunctional(torch.nn.Module):
    r""" module to replace FloatFunctional module before FX graph mode quantization,
    since activation_post_process will be inserted in top level module directly

    Valid operation names:
        - add
        - cat
        - mul
        - add_relu
        - add_scalar
        - mul_scalar
    """
    def forward(self, x):
        raise RuntimeError("FloatFunctional is not intended to use the " +
                           "'forward'. Please use the underlying operation")

    r"""Operation equivalent to ``torch.add(Tensor, Tensor)``"""
    def add(self, x: Tensor, y: Tensor) -> Tensor:
        r = torch.add(x, y)
        return r

    r"""Operation equivalent to ``torch.add(Tensor, float)``"""
    def add_scalar(self, x: Tensor, y: float) -> Tensor:
        r = torch.add(x, y)
        return r

    r"""Operation equivalent to ``torch.mul(Tensor, Tensor)``"""
    def mul(self, x: Tensor, y: Tensor) -> Tensor:
        r = torch.mul(x, y)
        return r

    r"""Operation equivalent to ``torch.mul(Tensor, float)``"""
    def mul_scalar(self, x: Tensor, y: float) -> Tensor:
        r = torch.mul(x, y)
        return r

    r"""Operation equivalent to ``torch.cat``"""
    def cat(self, x: List[Tensor], dim: int = 0) -> Tensor:
        r = torch.cat(x, dim=dim)
        return r

    r"""Operation equivalent to ``relu(torch.add(x,y))``"""
    def add_relu(self, x: Tensor, y: Tensor) -> Tensor:
        r = torch.add(x, y)
        r = torch.nn.functional.relu(r)
        return r

class QFunctional(torch.nn.Module):
    r"""Wrapper class for quantized operations.

    The instance of this class can be used instead of the
    ``torch.ops.quantized`` prefix. See example usage below.

    .. note::

        This class does not provide a ``forward`` hook. Instead, you must use
        one of the underlying functions (e.g. ``add``).

    Examples::

        >>> q_add = QFunctional()
        >>> a = torch.quantize_per_tensor(torch.tensor(3.0), 1.0, 0, torch.qint32)
        >>> b = torch.quantize_per_tensor(torch.tensor(4.0), 1.0, 0, torch.qint32)
        >>> q_add.add(a, b)  # Equivalent to ``torch.ops.quantized.add(a, b, 1.0, 0)``

    Valid operation names:
        - add
        - cat
        - mul
        - add_relu
        - add_scalar
        - mul_scalar
    """
    def __init__(self):
        super(QFunctional, self).__init__()
        self.scale = 1.0
        self.zero_point = 0
        self.activation_post_process = torch.nn.Identity()

    def _save_to_state_dict(self, destination, prefix, keep_vars):
        super(QFunctional, self)._save_to_state_dict(destination, prefix, keep_vars)
        destination[prefix + 'scale'] = torch.tensor(self.scale)
        destination[prefix + 'zero_point'] = torch.tensor(self.zero_point)

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
                              missing_keys, unexpected_keys, error_msgs):

        self.scale = float(state_dict.pop(prefix + 'scale'))
        self.zero_point = int(state_dict.pop(prefix + 'zero_point'))
        super(QFunctional, self)._load_from_state_dict(state_dict, prefix, local_metadata, False,
                                                       missing_keys, unexpected_keys, error_msgs)

    def _get_name(self):
        return 'QFunctional'

    def extra_repr(self):
        return 'scale={}, zero_point={}'.format(
            self.scale, self.zero_point
        )

    def forward(self, x):
        raise RuntimeError("Functional is not intended to use the " +
                           "'forward'. Please use the underlying operation")

    r"""Operation equivalent to ``torch.ops.quantized.add``"""
    def add(self, x: Tensor, y: Tensor) -> Tensor:
        r = ops.quantized.add(x, y, scale=self.scale, zero_point=self.zero_point)
        r = self.activation_post_process(r)
        return r

    r"""Operation equivalent to ``torch.ops.quantized.add(Tensor, float)``"""
    def add_scalar(self, x: Tensor, y: float) -> Tensor:
        r = ops.quantized.add_scalar(x, y)
        # Note: this operation is not observed because the observation is not
        # needed for the quantized op.
        return r

    r"""Operation equivalent to ``torch.ops.quantized.mul(Tensor, Tensor)``"""
    def mul(self, x: Tensor, y: Tensor) -> Tensor:
        r = ops.quantized.mul(x, y, scale=self.scale, zero_point=self.zero_point)
        r = self.activation_post_process(r)
        return r

    r"""Operation equivalent to ``torch.ops.quantized.mul(Tensor, float)``"""
    def mul_scalar(self, x: Tensor, y: float) -> Tensor:
        r = ops.quantized.mul_scalar(x, y)
        # Note: this operation is not observed because the observation is not
        # needed for the quantized op.
        return r

    r"""Operation equivalent to ``torch.ops.quantized.cat``"""
    def cat(self, x: List[Tensor], dim: int = 0) -> Tensor:
        r = ops.quantized.cat(x, scale=self.scale, zero_point=self.zero_point, dim=dim)
        r = self.activation_post_process(r)
        return r

    r"""Operation equivalent to ``torch.ops.quantized.add_relu``"""
    def add_relu(self, x: Tensor, y: Tensor) -> Tensor:
        r = ops.quantized.add_relu(x, y, scale=self.scale, zero_point=self.zero_point)
        r = self.activation_post_process(r)
        return r

    @classmethod
    def from_float(cls, mod):
        assert type(mod) == FloatFunctional,\
            "QFunctional.from_float expects an instance of FloatFunctional"
        scale, zero_point = mod.activation_post_process.calculate_qparams()
        new_mod = QFunctional()
        new_mod.scale = float(scale)
        new_mod.zero_point = int(zero_point)
        return new_mod