Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

neilisaac / torch   python

Repository URL to install this package:

Version: 1.8.0 

/ optim / adadelta.py

import torch

from . import _functional as F
from .optimizer import Optimizer


class Adadelta(Optimizer):
    """Implements Adadelta algorithm.

    It has been proposed in `ADADELTA: An Adaptive Learning Rate Method`__.

    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        rho (float, optional): coefficient used for computing a running average
            of squared gradients (default: 0.9)
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-6)
        lr (float, optional): coefficient that scale delta before it is applied
            to the parameters (default: 1.0)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)

    __ https://arxiv.org/abs/1212.5701
    """

    def __init__(self, params, lr=1.0, rho=0.9, eps=1e-6, weight_decay=0):
        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 <= rho <= 1.0:
            raise ValueError("Invalid rho value: {}".format(rho))
        if not 0.0 <= eps:
            raise ValueError("Invalid epsilon value: {}".format(eps))
        if not 0.0 <= weight_decay:
            raise ValueError("Invalid weight_decay value: {}".format(weight_decay))

        defaults = dict(lr=lr, rho=rho, eps=eps, weight_decay=weight_decay)
        super(Adadelta, self).__init__(params, defaults)

    @torch.no_grad()
    def step(self, closure=None):
        """Performs a single optimization step.

        Args:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            params_with_grad = []
            grads = []
            square_avgs = []
            acc_deltas = []

            for p in group['params']:
                if p.grad is None:
                    continue
                params_with_grad.append(p)
                if p.grad.is_sparse:
                    raise RuntimeError('Adadelta does not support sparse gradients')
                grads.append(p.grad)

                state = self.state[p]

                # Lazy state initialization
                if len(state) == 0:
                    state['step'] = 0
                    state['square_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
                    state['acc_delta'] = torch.zeros_like(p, memory_format=torch.preserve_format)

                square_avgs.append(state['square_avg'])
                acc_deltas.append(state['acc_delta'])

                lr, rho, eps, weight_decay = group['lr'], group['rho'], group['eps'], group['weight_decay']

                state['step'] += 1

            F.adadelta(params_with_grad,
                       grads,
                       square_avgs,
                       acc_deltas,
                       lr,
                       rho,
                       eps,
                       weight_decay)

        return loss