Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

neilisaac / torch   python

Repository URL to install this package:

Version: 1.8.0 

/ optim / swa_utils.py

import torch
import math
from torch.nn import Module
from copy import deepcopy
from torch.optim.lr_scheduler import _LRScheduler


class AveragedModel(Module):
    r"""Implements averaged model for Stochastic Weight Averaging (SWA).

    Stochastic Weight Averaging was proposed in `Averaging Weights Leads to
    Wider Optima and Better Generalization`_ by Pavel Izmailov, Dmitrii
    Podoprikhin, Timur Garipov, Dmitry Vetrov and Andrew Gordon Wilson
    (UAI 2018).

    AveragedModel class creates a copy of the provided module :attr:`model`
    on the device :attr:`device` and allows to compute running averages of the 
    parameters of the :attr:`model`.

    Args:
        model (torch.nn.Module): model to use with SWA
        device (torch.device, optional): if provided, the averaged model will be
            stored on the :attr:`device` 
        avg_fn (function, optional): the averaging function used to update 
            parameters; the function must take in the current value of the 
            :class:`AveragedModel` parameter, the current value of :attr:`model`
            parameter and the number of models already averaged; if None, 
            equally weighted average is used (default: None)

    Example:
        >>> loader, optimizer, model, loss_fn = ...
        >>> swa_model = torch.optim.swa_utils.AveragedModel(model)
        >>> scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 
        >>>                                     T_max=300)
        >>> swa_start = 160
        >>> swa_scheduler = SWALR(optimizer, swa_lr=0.05)
        >>> for i in range(300):
        >>>      for input, target in loader:
        >>>          optimizer.zero_grad()
        >>>          loss_fn(model(input), target).backward()
        >>>          optimizer.step()
        >>>      if i > swa_start:
        >>>          swa_model.update_parameters(model)
        >>>          swa_scheduler.step()
        >>>      else:
        >>>          scheduler.step()
        >>>
        >>> # Update bn statistics for the swa_model at the end
        >>> torch.optim.swa_utils.update_bn(loader, swa_model) 

    You can also use custom averaging functions with `avg_fn` parameter.
    If no averaging function is provided, the default is to compute
    equally-weighted average of the weights.

    Example:
        >>> # Compute exponential moving averages of the weights
        >>> ema_avg = lambda averaged_model_parameter, model_parameter, num_averaged:\
                            0.1 * averaged_model_parameter + 0.9 * model_parameter
        >>> swa_model = torch.optim.swa_utils.AveragedModel(model, avg_fn=ema_avg)

    .. note::
        When using SWA with models containing Batch Normalization you may 
        need to update the activation statistics for Batch Normalization.
        You can do so by using :meth:`torch.optim.swa_utils.update_bn` utility.

    .. note::
        :attr:`avg_fn` is not saved in the :meth:`state_dict` of the model.

    .. note::
        When :meth:`update_parameters` is called for the first time (i.e. 
        :attr:`n_averaged` is `0`) the parameters of `model` are copied
        to the parameters of :class:`AveragedModel`. For every subsequent
        call of :meth:`update_parameters` the function `avg_fn` is used
        to update the parameters.

    .. _Averaging Weights Leads to Wider Optima and Better Generalization:
        https://arxiv.org/abs/1803.05407
    .. _There Are Many Consistent Explanations of Unlabeled Data: Why You Should
        Average:
        https://arxiv.org/abs/1806.05594
    .. _SWALP: Stochastic Weight Averaging in Low-Precision Training:
        https://arxiv.org/abs/1904.11943
    .. _Stochastic Weight Averaging in Parallel: Large-Batch Training That 
        Generalizes Well:
        https://arxiv.org/abs/2001.02312
    """
    def __init__(self, model, device=None, avg_fn=None):
        super(AveragedModel, self).__init__()
        self.module = deepcopy(model)
        if device is not None:
            self.module = self.module.to(device)
        self.register_buffer('n_averaged',
                             torch.tensor(0, dtype=torch.long, device=device))
        if avg_fn is None:
            def avg_fn(averaged_model_parameter, model_parameter, num_averaged):
                return averaged_model_parameter + \
                    (model_parameter - averaged_model_parameter) / (num_averaged + 1)
        self.avg_fn = avg_fn

    def forward(self, *args, **kwargs):
        return self.module(*args, **kwargs)

    def update_parameters(self, model):
        for p_swa, p_model in zip(self.parameters(), model.parameters()):
            device = p_swa.device
            p_model_ = p_model.detach().to(device)
            if self.n_averaged == 0:
                p_swa.detach().copy_(p_model_)
            else:
                p_swa.detach().copy_(self.avg_fn(p_swa.detach(), p_model_,
                                                 self.n_averaged.to(device)))
        self.n_averaged += 1


def update_bn(loader, model, device=None):
    r"""Updates BatchNorm running_mean, running_var buffers in the model.

    It performs one pass over data in `loader` to estimate the activation
    statistics for BatchNorm layers in the model.
    Args:
        loader (torch.utils.data.DataLoader): dataset loader to compute the
            activation statistics on. Each data batch should be either a
            tensor, or a list/tuple whose first element is a tensor
            containing data.
        model (torch.nn.Module): model for which we seek to update BatchNorm
            statistics.
        device (torch.device, optional): If set, data will be transferred to
            :attr:`device` before being passed into :attr:`model`.

    Example:
        >>> loader, model = ...
        >>> torch.optim.swa_utils.update_bn(loader, model) 

    .. note::
        The `update_bn` utility assumes that each data batch in :attr:`loader`
        is either a tensor or a list or tuple of tensors; in the latter case it 
        is assumed that :meth:`model.forward()` should be called on the first 
        element of the list or tuple corresponding to the data batch.
    """
    momenta = {}
    for module in model.modules():
        if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
            module.running_mean = torch.zeros_like(module.running_mean)
            module.running_var = torch.ones_like(module.running_var)
            momenta[module] = module.momentum

    if not momenta:
        return

    was_training = model.training
    model.train()
    for module in momenta.keys():
        module.momentum = None
        module.num_batches_tracked *= 0

    for input in loader:
        if isinstance(input, (list, tuple)):
            input = input[0]
        if device is not None:
            input = input.to(device)

        model(input)

    for bn_module in momenta.keys():
        bn_module.momentum = momenta[bn_module]
    model.train(was_training)


class SWALR(_LRScheduler):
    r"""Anneals the learning rate in each parameter group to a fixed value.

    This learning rate scheduler is meant to be used with Stochastic Weight 
    Averaging (SWA) method (see `torch.optim.swa_utils.AveragedModel`).

    Args:
        optimizer (torch.optim.Optimizer): wrapped optimizer
        swa_lrs (float or list): the learning rate value for all param groups
            together or separately for each group.
        annealing_epochs (int): number of epochs in the annealing phase 
            (default: 10)
        annealing_strategy (str): "cos" or "linear"; specifies the annealing 
            strategy: "cos" for cosine annealing, "linear" for linear annealing
            (default: "cos")
        last_epoch (int): the index of the last epoch (default: 'cos')

    The :class:`SWALR` scheduler is can be used together with other
    schedulers to switch to a constant learning rate late in the training 
    as in the example below.

    Example:
        >>> loader, optimizer, model = ...
        >>> lr_lambda = lambda epoch: 0.9
        >>> scheduler = torch.optim.lr_scheduler.MultiplicativeLR(optimizer, 
        >>>        lr_lambda=lr_lambda)
        >>> swa_scheduler = torch.optim.swa_utils.SWALR(optimizer, 
        >>>        anneal_strategy="linear", anneal_epochs=20, swa_lr=0.05)
        >>> swa_start = 160
        >>> for i in range(300):
        >>>      for input, target in loader:
        >>>          optimizer.zero_grad()
        >>>          loss_fn(model(input), target).backward()
        >>>          optimizer.step()
        >>>      if i > swa_start:
        >>>          swa_scheduler.step()
        >>>      else:
        >>>          scheduler.step()

    .. _Averaging Weights Leads to Wider Optima and Better Generalization:
        https://arxiv.org/abs/1803.05407
    """
    def __init__(self, optimizer, swa_lr, anneal_epochs=10, anneal_strategy='cos', last_epoch=-1):
        swa_lrs = self._format_param(optimizer, swa_lr)
        for swa_lr, group in zip(swa_lrs, optimizer.param_groups):
            group['swa_lr'] = swa_lr
        if anneal_strategy not in ['cos', 'linear']:
            raise ValueError("anneal_strategy must by one of 'cos' or 'linear', "
                             "instead got {}".format(anneal_strategy))
        elif anneal_strategy == 'cos':
            self.anneal_func = self._cosine_anneal
        elif anneal_strategy == 'linear':
            self.anneal_func = self._linear_anneal
        if not isinstance(anneal_epochs, int) or anneal_epochs < 0:
            raise ValueError("anneal_epochs must be equal or greater than 0, got {}".format(
                             anneal_epochs)) 
        self.anneal_epochs = anneal_epochs

        super(SWALR, self).__init__(optimizer, last_epoch)

    @staticmethod
    def _format_param(optimizer, swa_lrs):
        if isinstance(swa_lrs, (list, tuple)):
            if len(swa_lrs) != len(optimizer.param_groups):
                raise ValueError("swa_lr must have the same length as "
                                 "optimizer.param_groups: swa_lr has {}, "
                                 "optimizer.param_groups has {}".format(
                                     len(swa_lrs), len(optimizer.param_groups)))
            return swa_lrs
        else:
            return [swa_lrs] * len(optimizer.param_groups)

    @staticmethod
    def _linear_anneal(t):
        return t

    @staticmethod
    def _cosine_anneal(t):
        return (1 - math.cos(math.pi * t)) / 2

    @staticmethod
    def _get_initial_lr(lr, swa_lr, alpha):
        if alpha == 1:
            return swa_lr
        return (lr - alpha * swa_lr) / (1 - alpha)

    def get_lr(self):
        if not self._get_lr_called_within_step:
            warnings.warn("To get the last learning rate computed by the scheduler, "
                          "please use `get_last_lr()`.", UserWarning)
        step = self._step_count - 1
        if self.anneal_epochs == 0:
            step = max(1, step)
        prev_t = max(0, min(1, (step - 1) / max(1, self.anneal_epochs)))
        prev_alpha = self.anneal_func(prev_t)
        prev_lrs = [self._get_initial_lr(group['lr'], group['swa_lr'], prev_alpha)
                    for group in self.optimizer.param_groups]
        t = max(0, min(1, step / max(1, self.anneal_epochs)))
        alpha = self.anneal_func(t)
        return [group['swa_lr'] * alpha + lr * (1 - alpha) 
                for group, lr in zip(self.optimizer.param_groups, prev_lrs)]