Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

neilisaac / torch   python

Repository URL to install this package:

/ python / ideep / convfusion_op_test.py






import unittest
import hypothesis.strategies as st
from hypothesis import given
import numpy as np
import math
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
from caffe2.python.transformations import optimizeForMKLDNN
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.ideep_test_util as mu


@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class ConvFusionTest(hu.HypothesisTestCase):
    @given(stride=st.integers(1, 3),
           pad=st.integers(0, 3),
           kernel=st.integers(3, 5),
           size=st.integers(8, 20),
           input_channels=st.integers(1, 16),
           output_channels=st.integers(1, 16),
           batch_size=st.integers(1, 3),
           use_bias=st.booleans(),
           group=st.integers(1, 1),
           **mu.gcs)
    def test_convolution_relu_fusion(self, stride, pad, kernel, size,
                             input_channels, output_channels,
                             batch_size, use_bias, group, gc, dc):
        conv = core.CreateOperator(
            "Conv",
            ["X0", "w0", "b0"] if use_bias else ["X0", "w0"],
            ["Y0"],
            stride=stride,
            pad=pad,
            kernel=kernel,
            group=group,
            device_option=dc[0]
        )
        relu = core.CreateOperator(
            "Relu",
            ["Y0"],
            ["Y0"],
            device_option=dc[0]
        )

        # Manual fusion for Conv + ReLU
        conv_fusion = core.CreateOperator(
            "ConvFusion",
            ["X1", "w1", "b1"] if use_bias else ["X1", "w1"],
            ["Y1"],
            stride=stride,
            pad=pad,
            kernel=kernel,
            group=group,
            fusion_type = 1,
            device_option=dc[1]
        )

        X = np.random.rand(
            batch_size, input_channels * group, size, size).astype(np.float32) - 0.5
        w = np.random.rand(
                output_channels * group, input_channels, kernel, kernel) \
            .astype(np.float32) - 0.5
        b = np.random.rand(output_channels * group).astype(np.float32) - 0.5

        old_ws_name = workspace.CurrentWorkspace()
        workspace.SwitchWorkspace("_device_check_", True)
        workspace.FeedBlob('X0', X, dc[0])
        workspace.FeedBlob('w0', w, dc[0])
        workspace.FeedBlob('b0', b, dc[0])
        workspace.RunOperatorOnce(conv)
        workspace.RunOperatorOnce(relu)
        Y0 = workspace.FetchBlob('Y0')

        workspace.ResetWorkspace()
        workspace.FeedBlob('X1', X, dc[1])
        workspace.FeedBlob('w1', w, dc[1])
        workspace.FeedBlob('b1', b, dc[1])
        workspace.RunOperatorOnce(conv_fusion)
        Y1 = workspace.FetchBlob('Y1')
        if not np.allclose(Y0, Y1, atol=0.01, rtol=0.01):
            print(Y1.flatten())
            print(Y0.flatten())
            print(np.max(np.abs(Y1 - Y0)))
            self.assertTrue(False)

        # Auto fusion for Conv + ReLU
        workspace.ResetWorkspace()
        old_net = caffe2_pb2.NetDef()
        conv_old = caffe2_pb2.OperatorDef()
        conv_old.CopyFrom(conv)
        conv_old.device_option.CopyFrom(dc[1])
        relu_old = caffe2_pb2.OperatorDef()
        relu_old.CopyFrom(relu)
        relu_old.device_option.CopyFrom(dc[1])
        old_net.op.extend([conv_old, relu_old])
        workspace.FeedBlob('X0', X, dc[1])
        workspace.FeedBlob('w0', w, dc[1])
        workspace.FeedBlob('b0', b, dc[1])
        net = core.Net("net")
        net.Proto().CopyFrom(old_net)
        optimizeForMKLDNN(net)
        self.assertTrue(len(net.Proto().op) == 1)
        self.assertTrue(net.Proto().op[0].type == "ConvFusion")
        workspace.RunOperatorOnce(net.Proto().op[0])
        Y2 = workspace.FetchBlob('Y0')
        if not np.allclose(Y0, Y2, atol=0.01, rtol=0.01):
            print(Y2.flatten())
            print(Y0.flatten())
            print(np.max(np.abs(Y2 - Y0)))
            self.assertTrue(False)

        workspace.SwitchWorkspace(old_ws_name)

    @given(stride=st.integers(1, 3),
           pad=st.integers(0, 3),
           kernel=st.integers(3, 5),
           size=st.integers(8, 20),
           input_channels=st.integers(1, 16),
           output_channels=st.integers(1, 16),
           batch_size=st.integers(1, 3),
           use_bias=st.booleans(),
           group=st.integers(1, 1),
           sum_add=st.sampled_from(["Sum", "Add"]),
           **mu.gcs)
    def test_convolution_sum_fusion(self, stride, pad, kernel, size,
                             input_channels, output_channels,
                             batch_size, use_bias, group, sum_add, gc, dc):
        pool_S0 = core.CreateOperator(
            "MaxPool",
            ["SX0"],
            ["S0"],
            stride=2,
            pad=0,
            kernel=2,
            device_option=dc[0]
        )
        conv = core.CreateOperator(
            "Conv",
            ["X0", "w0", "b0"] if use_bias else ["X0", "w0"],
            ["Y0"],
            stride=stride,
            pad=pad,
            kernel=kernel,
            group=group,
            device_option=dc[0]
        )
        sum = core.CreateOperator(
            sum_add,
            ["S0", "Y0"],
            ["S0"],
            device_option=dc[0]
        )

        # Manual fusion for Conv + Sum
        pool_S1 = core.CreateOperator(
            "MaxPool",
            ["SX1"],
            ["S1"],
            stride=2,
            pad=0,
            kernel=2,
            group=group,
            device_option=dc[1]
        )
        conv_fusion = core.CreateOperator(
            "ConvFusion",
            ["X1", "w1", "b1", "S1"] if use_bias else ["X1", "w1", "S1"],
            ["S1"],
            stride=stride,
            pad=pad,
            kernel=kernel,
            group=group,
            fusion_type = 2,
            device_option=dc[1]
        )
        pool_input_size = int(math.ceil(float(size + 2 * pad - kernel + 1) / stride)) * 2;
        SX = np.random.rand(
            batch_size, output_channels * group, pool_input_size, pool_input_size).astype(np.float32) - 0.5
        X = np.random.rand(
            batch_size, input_channels * group, size, size).astype(np.float32) - 0.5
        w = np.random.rand(
                output_channels * group, input_channels, kernel, kernel) \
            .astype(np.float32) - 0.5
        b = np.random.rand(output_channels * group).astype(np.float32) - 0.5

        old_ws_name = workspace.CurrentWorkspace()
        workspace.SwitchWorkspace("_device_check_", True)
        workspace.FeedBlob('SX0', SX, dc[0])
        workspace.FeedBlob('X0', X, dc[0])
        workspace.FeedBlob('w0', w, dc[0])
        workspace.FeedBlob('b0', b, dc[0])
        workspace.RunOperatorOnce(pool_S0)
        workspace.RunOperatorOnce(conv)
        workspace.RunOperatorOnce(sum)
        S0 = workspace.FetchBlob('S0')

        workspace.ResetWorkspace()
        workspace.FeedBlob('SX1', SX, dc[1])
        workspace.FeedBlob('X1', X, dc[1])
        workspace.FeedBlob('w1', w, dc[1])
        workspace.FeedBlob('b1', b, dc[1])
        workspace.RunOperatorOnce(pool_S1)
        workspace.RunOperatorOnce(conv_fusion)
        S1 = workspace.FetchBlob('S1')

        if not np.allclose(S0, S1, atol=0.01, rtol=0.01):
            print(S1.flatten())
            print(S0.flatten())
            print(np.max(np.abs(S1 - S0)))
            self.assertTrue(False)

        # Auto fusion for Conv + Sum
        workspace.ResetWorkspace()
        old_net = caffe2_pb2.NetDef()
        pool_S0_old = caffe2_pb2.OperatorDef()
        pool_S0_old.CopyFrom(pool_S0)
        pool_S0_old.device_option.CopyFrom(dc[1])
        conv_old = caffe2_pb2.OperatorDef()
        conv_old.CopyFrom(conv)
        conv_old.device_option.CopyFrom(dc[1])
        sum_old = caffe2_pb2.OperatorDef()
        sum_old.CopyFrom(sum)
        sum_old.device_option.CopyFrom(dc[1])
        old_net.op.extend([pool_S0_old, conv_old, sum_old])

        # Conv + Sum should be fused case: [PreNode, Conv, Sum]
        workspace.FeedBlob('SX0', SX, dc[1])
        workspace.FeedBlob('X0', X, dc[1])
        workspace.FeedBlob('w0', w, dc[1])
        workspace.FeedBlob('b0', b, dc[1])
        net = core.Net("net")
        net.Proto().CopyFrom(old_net)
        optimizeForMKLDNN(net)
        self.assertTrue(len(net.Proto().op) == 2)
        self.assertTrue(net.Proto().op[1].type == "ConvFusion")
        workspace.RunNetOnce(net.Proto())
        # The output tensor name will be changed by optimization
        # sometimes when applying conv sum fusion
        S2 = workspace.FetchBlob(net.Proto().op[-1].output[0])
        if not np.allclose(S0, S2, atol=0.01, rtol=0.01):
            print(S2.flatten())
            print(S0.flatten())
            print(np.max(np.abs(S2 - S0)))
            self.assertTrue(False)

        # Conv + Sum should be fused case: [Conv, PreNode, Sum]
        workspace.ResetWorkspace()
        old_net = caffe2_pb2.NetDef()
        workspace.FeedBlob('SX0', SX, dc[1])
        workspace.FeedBlob('X0', X, dc[1])
        workspace.FeedBlob('w0', w, dc[1])
        workspace.FeedBlob('b0', b, dc[1])
        old_net.op.extend([conv_old, pool_S0_old, sum_old])
        net = core.Net("net")
        net.Proto().CopyFrom(old_net)
        optimizeForMKLDNN(net)
        self.assertTrue(len(net.Proto().op) == 2)
        self.assertTrue(net.Proto().op[1].type == "ConvFusion")
        workspace.RunNetOnce(net.Proto())
        # The output tensor name will be changed by optimization
        # sometimes when applying conv sum fusion
        S2 = workspace.FetchBlob(net.Proto().op[-1].output[0])
        if not np.allclose(S0, S2, atol=0.01, rtol=0.01):
            print(S2.flatten())
            print(S0.flatten())
            print(np.max(np.abs(S2 - S0)))
            self.assertTrue(False)

        # Conv + Sum should not be fused case: [Conv, midOp, preNode, Sum] Conv output is used by midOp
        dropout = core.CreateOperator(
            "Dropout",
            ["Y0"],
            ["Y_dropout"],
            ratio=0.5,
            is_test=True,
            device_option=dc[1]
        )

        workspace.ResetWorkspace()
        workspace.FeedBlob('SX0', SX, dc[1])
        workspace.FeedBlob('X0', X, dc[1])
        workspace.FeedBlob('w0', w, dc[1])
        workspace.FeedBlob('b0', b, dc[1])
        old_net = caffe2_pb2.NetDef()
        old_net.op.extend([conv_old, dropout, pool_S0_old, sum_old])
        net = core.Net("net")
        net.Proto().CopyFrom(old_net)
        optimizeForMKLDNN(net)
        self.assertTrue(len(net.Proto().op) == 4)
        workspace.RunNetOnce(net.Proto())
        S2 = workspace.FetchBlob(net.Proto().op[-1].output[0])
        if not np.allclose(S0, S2, atol=0.01, rtol=0.01):
            print(S2.flatten())
            print(S0.flatten())
            print(np.max(np.abs(S2 - S0)))
            self.assertTrue(False)

        # Conv + Sum should not be fused case: [Conv, preNode, Sum, midOp] preNode output is used by midOp
        sum1 = core.CreateOperator(
            sum_add,
            ["S0", "Y0"],
            ["S3"],
            device_option=dc[1]
        )
        dropout = core.CreateOperator(
            "Dropout",
            ["S0"],
            ["Y_dropout"],
            ratio=0.5,
            is_test=True,
            device_option=dc[1]
        )

        workspace.ResetWorkspace()
        workspace.FeedBlob('SX0', SX, dc[1])
        workspace.FeedBlob('X0', X, dc[1])
        workspace.FeedBlob('w0', w, dc[1])
        workspace.FeedBlob('b0', b, dc[1])
        old_net = caffe2_pb2.NetDef()
        old_net.op.extend([conv_old, pool_S0_old, sum1, dropout])
        net = core.Net("net")
        net.Proto().CopyFrom(old_net)
        optimizeForMKLDNN(net)
        print("net={}\n".format(net.Proto()))
        self.assertTrue(len(net.Proto().op) == 4)
        workspace.RunNetOnce(net.Proto())
        S2 = workspace.FetchBlob(net.Proto().op[-2].output[0])
        if not np.allclose(S0, S2, atol=0.01, rtol=0.01):
            print(S2.flatten())
            print(S0.flatten())
            print(np.max(np.abs(S2 - S0)))
            self.assertTrue(False)

        # Conv + Sum should not be fused case: [Conv, midOp, preNode, Sum]
        # midOp output has the same name with that of the Conv input
        relu_0 = core.CreateOperator(
            "Relu",
            ["X0"],
            ["X1"],
            device_option=dc[0]
Loading ...