import unittest
from functools import reduce
import hypothesis.strategies as st
from hypothesis import given, settings
import numpy as np
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.ideep_test_util as mu
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class FcTest(hu.HypothesisTestCase):
@given(n=st.integers(1, 5), m=st.integers(1, 5),
k=st.integers(1, 5), **mu.gcs)
@settings(deadline=1000)
def test_fc_2_dims(self, n, m, k, gc, dc):
X = np.random.rand(m, k).astype(np.float32) - 0.5
W = np.random.rand(n, k).astype(np.float32) - 0.5
b = np.random.rand(n).astype(np.float32) - 0.5
op = core.CreateOperator(
'FC',
['X', 'W', 'b'],
["Y"]
)
self.assertDeviceChecks(dc, op, [X, W, b], [0])
for i in range(3):
self.assertGradientChecks(gc, op, [X, W, b], i, [0])
@given(n=st.integers(1, 5),
m=st.integers(1, 5),
c=st.integers(1, 5),
h=st.integers(1, 5),
w=st.integers(1, 5),
axis=st.integers(1, 3),
**mu.gcs)
def test_fc_with_axis(self, n, m, c, h, w, axis, gc, dc):
X = np.random.rand(n, c, h, w).astype(np.float32) - 0.5
k = reduce((lambda x, y: x * y), [n, c, h, w][axis - 4:])
nn = reduce((lambda x, y: x * y), [n, c, h, w][:axis])
W = np.random.rand(m, k).astype(np.float32) - 0.5
b = np.random.rand(m).astype(np.float32) - 0.5
dY = np.random.rand(nn, m).astype(np.float32) - 0.5
op0 = core.CreateOperator(
'FC',
['X', 'W', 'b'],
["Y"],
axis=axis,
device_option=dc[0]
)
op0_bw = core.CreateOperator(
'FCGradient',
['X', 'W', 'dY'],
["dW", "db"],
axis=axis,
device_option=dc[0]
)
workspace.ResetWorkspace()
workspace.FeedBlob('X', X, dc[0])
workspace.FeedBlob('W', W, dc[0])
workspace.FeedBlob('b', b, dc[0])
workspace.RunOperatorOnce(op0)
Y0 = workspace.FetchBlob('Y')
workspace.FeedBlob('dY', dY, dc[0])
workspace.RunOperatorOnce(op0_bw)
dW0 = workspace.FetchBlob('dW')
db0 = workspace.FetchBlob('db')
op1 = core.CreateOperator(
'FC',
['X', 'W', 'b'],
["Y"],
axis=axis,
device_option=dc[1]
)
op1_bw = core.CreateOperator(
'FCGradient',
['X', 'W', 'dY'],
["dW", "db"],
axis=axis,
device_option=dc[1]
)
workspace.SwitchWorkspace("_device_check_", True)
workspace.FeedBlob('X', X, dc[1])
workspace.FeedBlob('W', W, dc[1])
workspace.FeedBlob('b', b, dc[1])
workspace.RunOperatorOnce(op1)
Y1 = workspace.FetchBlob('Y')
workspace.FeedBlob('dY', dY, dc[1])
workspace.RunOperatorOnce(op1_bw)
dW1 = workspace.FetchBlob('dW')
db1 = workspace.FetchBlob('db')
Y0 = Y0.flatten()
Y1 = Y1.flatten()
if not np.allclose(Y0, Y1, atol=0.01, rtol=0.01):
print(Y1)
print(Y0)
print(np.max(np.abs(Y1 - Y0)))
self.assertTrue(False)
dW0 = dW0.flatten()
dW1 = dW1.flatten()
if not np.allclose(dW0, dW1, atol=0.01, rtol=0.01):
print(dW1)
print(dW0)
print(np.max(np.abs(dW1 - dW0)))
self.assertTrue(False)
db0 = db0.flatten()
db1 = db1.flatten()
if not np.allclose(db0, db1, atol=0.01, rtol=0.01):
print(db1)
print(db0)
print(np.max(np.abs(db1 - db0)))
self.assertTrue(False)
@given(n=st.integers(1, 5),
o=st.integers(1, 5),
i=st.integers(1, 5),
h=st.integers(1, 5),
w=st.integers(1, 5),
axis_w=st.integers(1, 3),
**mu.gcs)
@settings(deadline=1000)
def test_fc_with_axis_w(self, n, o, i, h, w, axis_w, gc, dc):
W = np.random.rand(o, i, h, w).astype(np.float32) - 0.5
k = reduce((lambda x, y: x * y), [o, i, h, w][axis_w - 4:])
m = reduce((lambda x, y: x * y), [o, i, h, w][:axis_w])
X = np.random.rand(n, k).astype(np.float32) - 0.5
b = np.random.rand(m).astype(np.float32) - 0.5
dY = np.random.rand(n, m).astype(np.float32) - 0.5
op0 = core.CreateOperator(
'FC',
['X', 'W', 'b'],
["Y"],
axis_w=axis_w,
device_option=dc[0]
)
op0_bw = core.CreateOperator(
'FCGradient',
['X', 'W', 'dY'],
["dW", "db"],
axis_w=axis_w,
device_option=dc[0]
)
workspace.ResetWorkspace()
workspace.FeedBlob('X', X, dc[0])
workspace.FeedBlob('W', W, dc[0])
workspace.FeedBlob('b', b, dc[0])
workspace.RunOperatorOnce(op0)
Y0 = workspace.FetchBlob('Y')
workspace.FeedBlob('dY', dY, dc[0])
workspace.RunOperatorOnce(op0_bw)
dW0 = workspace.FetchBlob('dW')
db0 = workspace.FetchBlob('db')
op1 = core.CreateOperator(
'FC',
['X', 'W', 'b'],
["Y"],
axis_w=axis_w,
device_option=dc[1]
)
op1_bw = core.CreateOperator(
'FCGradient',
['X', 'W', 'dY'],
["dW", "db"],
axis_w=axis_w,
device_option=dc[1]
)
workspace.SwitchWorkspace("_device_check_", True)
workspace.FeedBlob('X', X, dc[1])
workspace.FeedBlob('W', W, dc[1])
workspace.FeedBlob('b', b, dc[1])
workspace.RunOperatorOnce(op1)
Y1 = workspace.FetchBlob('Y')
workspace.FeedBlob('dY', dY, dc[1])
workspace.RunOperatorOnce(op1_bw)
dW1 = workspace.FetchBlob('dW')
db1 = workspace.FetchBlob('db')
Y0 = Y0.flatten()
Y1 = Y1.flatten()
if not np.allclose(Y0, Y1, atol=0.01, rtol=0.01):
print(Y1)
print(Y0)
print(np.max(np.abs(Y1 - Y0)))
self.assertTrue(False)
dW0 = dW0.flatten()
dW1 = dW1.flatten()
if not np.allclose(dW0, dW1, atol=0.01, rtol=0.01):
print(dW1)
print(dW0)
print(np.max(np.abs(dW1 - dW0)))
self.assertTrue(False)
db0 = db0.flatten()
db1 = db1.flatten()
if not np.allclose(db0, db1, atol=0.01, rtol=0.01):
print(db1)
print(db0)
print(np.max(np.abs(db1 - db0)))
self.assertTrue(False)
@given(n=st.integers(1, 5), m=st.integers(1, 5),
k=st.integers(1, 5), **mu.gcs)
@settings(deadline=10000)
def test_fc_4_dims_src(self, n, m, k, gc, dc):
X = np.random.rand(m, k, m, m).astype(np.float32) - 0.5
W = np.random.rand(n, k * m * m).astype(np.float32) - 0.5
b = np.random.rand(n).astype(np.float32) - 0.5
op = core.CreateOperator(
'FC',
['X', 'W', 'b'],
["Y"]
)
self.assertDeviceChecks(dc, op, [X, W, b], [0])
for i in range(3):
self.assertGradientChecks(gc, op, [X, W, b], i, [0])
@given(n=st.integers(1, 5), m=st.integers(1, 5),
k=st.integers(1, 5), **mu.gcs)
@settings(deadline=10000)
def test_fc_4_dims(self, n, m, k, gc, dc):
X = np.random.rand(m, k, m, m).astype(np.float32) - 0.5
W = np.random.rand(n, k, m, m).astype(np.float32) - 0.5
b = np.random.rand(n).astype(np.float32) - 0.5
op = core.CreateOperator(
'FC',
['X', 'W', 'b'],
["Y"]
)
self.assertDeviceChecks(dc, op, [X, W, b], [0])
for i in range(3):
self.assertGradientChecks(gc, op, [X, W, b], i, [0])
@given(n=st.integers(2, 5), m=st.integers(2, 5),
k=st.integers(2, 5), **mu.gcs_cpu_ideep)
def test_int8_fc_4_dims(self, n, m, k, gc, dc):
X = np.random.rand(m, k, m, m).astype(np.float32) - 0.5
w = np.random.rand(n, k, m, m).astype(np.float32) - 0.5
b = np.random.rand(n).astype(np.float32) - 0.5
fc_fp32 = core.CreateOperator(
'FC',
['X', 'w', 'b'],
["Y"]
)
old_ws_name = workspace.CurrentWorkspace()
workspace.SwitchWorkspace("_device_check_", True)
workspace.FeedBlob('X', X, dc[0])
workspace.FeedBlob('w', w, dc[0])
workspace.FeedBlob('b', b, dc[0])
workspace.RunOperatorOnce(fc_fp32)
Y = workspace.FetchBlob('Y')
workspace.ResetWorkspace()
Y_absmax = np.array([np.absolute(Y).max()]).astype(np.float32)
if Y.min() >= 0:
Y_scale = Y_absmax / 0xFF
Y_zero_point = 0
else:
Y_scale = Y_absmax / 0x7F
Y_zero_point = 128
X_absmax = np.array([np.absolute(X).max()]).astype(np.float32)
if X.min() >= 0:
X_scale = X_absmax / 0xFF
X_zero_point = 0
else:
X_scale = X_absmax / 0x7F
X_zero_point = 128
w_absmax = np.array([np.absolute(w[i, ...]).max() for i in range(w.shape[0])]).astype(np.float32)
w_scale = w_absmax / 0x7F
w_zero_point = 128
w = np.transpose(w, (0, 2, 3, 1)).astype(np.float32)
w_bytes = np.rint([w[i, ...] / w_scale[i] for i in range(w.shape[0])]).astype(np.int8) + w_zero_point
w_filler = core.CreateOperator(
"Int8GivenTensorFill",
[], ["wi"],
shape=w.shape,
values=w_bytes.astype(np.uint8).tobytes(),
Y_zero_point=w_zero_point,
Y_scales=w_scale,
device_option=dc[1],
)
b_scale = w_scale * X_scale
b_zero_point = 0
b_bytes = np.rint([b[i] / b_scale[i] for i in range(b.shape[0])]).astype(np.int32)
b_filler = core.CreateOperator(
"Int8GivenIntTensorFill",
[], ["bi"],
shape=b.shape,
values=b_bytes,
Y_zero_point=b_zero_point,
Y_scales=b_scale,
device_option=dc[1],
)
sw2nhwc = core.CreateOperator(
"NCHW2NHWC",
["Xi"],
["Xi_nhwc"],
device_option=dc[1]
)
quantize_X = core.CreateOperator(
"Int8Quantize",
["Xi_nhwc"],
Loading ...