import unittest
import hypothesis.strategies as st
from hypothesis import given, settings
import numpy as np
from caffe2.python import core, workspace
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.ideep_test_util as mu
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class TransposeTest(hu.HypothesisTestCase):
@given(
X=hu.tensor(min_dim=1, max_dim=5, dtype=np.float32), use_axes=st.booleans(), **mu.gcs)
@settings(deadline=None, max_examples=50)
def test_transpose(self, X, use_axes, gc, dc):
ndim = len(X.shape)
axes = np.arange(ndim)
np.random.shuffle(axes)
if use_axes:
op = core.CreateOperator(
"Transpose", ["X"], ["Y"], axes=axes, device_option=gc)
else:
op = core.CreateOperator(
"Transpose", ["X"], ["Y"], device_option=gc)
def transpose_ref(X):
if use_axes:
return [np.transpose(X, axes=axes)]
else:
return [np.transpose(X)]
self.assertReferenceChecks(gc, op, [X], transpose_ref)
self.assertDeviceChecks(dc, op, [X], [0])
self.assertGradientChecks(gc, op, [X], 0, [0])
if __name__ == "__main__":
unittest.main()