import unittest
import numpy as np
import copy
from hypothesis import given
import hypothesis.strategies as st
from caffe2.python.model_helper import ModelHelper
from caffe2.python.models import resnet
from caffe2.python import workspace, brew
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.mkl.rewrite_graph as rewrite_graph
def deterministic_io(model):
model = copy.deepcopy(model)
for i, op in enumerate(model.InitProto().op):
op.device_option.random_seed = i + 1
if not model.Proto().external_output:
model.Proto().external_output.extend([model.Proto().op[-1].output[0]])
return model
def simple_fc():
model = ModelHelper(name="r")
brew.fc(model, "data", "fc", 10, 10)
return model, [(1, 10)]
def double_matmul():
model = ModelHelper(name="r")
fc0 = brew.fc(model, "data", "fc0", 10, 10)
fc1 = brew.fc(model, fc0, "fc1", 10, 10)
model.Proto().external_output[:] = [str(fc0), str(fc1)]
return model, [(1, 10)]
def simple_relu():
model = ModelHelper(name="r")
brew.relu(model, "data", "fc")
return model, [(1, 10)]
def simple_mlp():
model = ModelHelper(name="r")
brew.relu(
model,
brew.fc(
model,
brew.relu(
model,
brew.fc(
model,
"data",
"fc1",
10,
10),
"rl1"),
"fc2",
10,
10),
"rl2")
return model, [(1, 10)]
def simple_cnn():
model = ModelHelper(name="r", arg_scope={"order": "NCHW", "is_test": True})
brew.conv(
model, "data", 'conv1', 3, 16, kernel=3, stride=1
)
brew.spatial_bn(
model, 'conv1', 'conv1_spatbn', 16, epsilon=1e-3
)
brew.relu(model, 'conv1_spatbn', 'relu1')
return model, [(1, 3, 32, 32)]
def alexnet():
model = ModelHelper(name="r", arg_scope={"order": "NCHW", "is_test": True})
conv1 = brew.conv(
model,
"data",
"conv1",
3,
64,
11, ('XavierFill', {}), ('ConstantFill', {}),
stride=4,
pad=2
)
relu1 = brew.relu(model, conv1, "conv1")
pool1 = brew.max_pool(model, relu1, "pool1", kernel=3, stride=2, pad=0,
legacy_pad=3)
lrn1 = brew.lrn(
model, pool1, "pool1_lrn", size=5, alpha=1.0e-4, beta=0.75, bias=1.0)
conv2 = brew.conv(
model,
lrn1,
"conv2",
64,
192,
5,
('XavierFill', {}),
('ConstantFill', {}),
pad=2
)
relu2 = brew.relu(model, conv2, "conv2")
pool2 = brew.max_pool(model, relu2, "pool2", kernel=3, stride=2)
lrn2 = brew.lrn(
model, pool2, "pool2_lrn", size=5, alpha=1.0e-4, beta=0.75, bias=1.0)
conv3 = brew.conv(
model,
lrn2,
"conv3",
192,
384,
3,
('XavierFill', {}),
('ConstantFill', {}),
pad=1
)
relu3 = brew.relu(model, conv3, "conv3")
conv4 = brew.conv(
model,
relu3,
"conv4",
384,
256,
3,
('XavierFill', {}),
('ConstantFill', {}),
pad=1
)
relu4 = brew.relu(model, conv4, "conv4")
conv5 = brew.conv(
model,
relu4,
"conv5",
256,
256,
3,
('XavierFill', {}),
('ConstantFill', {}),
pad=1
)
relu5 = brew.relu(model, conv5, "conv5")
pool5 = brew.max_pool(model, relu5, "pool5", kernel=3, stride=2)
fc6 = brew.fc(
model,
pool5, "fc6", 256 * 6 * 6, 4096, ('XavierFill', {}),
('ConstantFill', {})
)
relu6 = brew.relu(model, fc6, "fc6")
fc7 = brew.fc(
model, relu6, "fc7", 4096, 4096, ('XavierFill', {}), ('ConstantFill', {})
)
relu7 = brew.relu(model, fc7, "fc7")
drop7 = brew.dropout(model, relu7, "fc7_dropout", is_test=1, ratio=0.5)
fc8 = brew.fc(
model, drop7, "fc8", 4096, 1000, ('XavierFill', {}), ('ConstantFill', {})
)
relu8 = brew.relu(model, fc8, "fc8")
brew.dropout(model, relu8, "fc8_dropout", is_test=1, ratio=0.5)
return model, [(1, 3, 224, 224)]
def simple_resnet():
model = ModelHelper(name="r", arg_scope={"order": "NCHW", "is_test": True})
resnet.create_resnet_32x32(
model, "data", num_input_channels=1, num_groups=1, num_labels=5,
is_test=True)
return model, [(1, 1, 32, 32)]
def complex_resnet():
model = ModelHelper(name="r", arg_scope={"order": "NCHW", "is_test": True})
resnet.create_resnet50(
model, "data", num_input_channels=1, num_labels=5, is_test=True,
no_loss=True)
return model, [(1, 1, 224, 224)]
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class MKLRewriteTest(hu.HypothesisTestCase):
@given(gen=st.sampled_from([simple_relu, simple_fc,
simple_mlp, simple_cnn]))
def test_mkl_simple_rewrite(self, gen):
cpu_model, (shape,) = gen()
cpu_model = deterministic_io(cpu_model)
mkl_model = rewrite_graph.rewrite_model_helper_simple(cpu_model)
X = np.random.randn(*shape).astype(np.float32)
def run(model):
self.ws.run(model.InitProto())
self.ws.create_blob(model.Proto().external_input[0]).feed(X)
self.ws.run(model.Proto())
return self.ws.blobs[model.Proto().external_output[0]].fetch()
np.testing.assert_allclose(run(cpu_model), run(mkl_model),
atol=1e-4, rtol=1e-4)
def test_mkl_resnet_rewrite(self):
cpu_model, (shape,) = complex_resnet()
cpu_model = deterministic_io(cpu_model)
mkl_model = rewrite_graph.rewrite_model_helper_simple(cpu_model)
np.random.seed(1701)
X = np.random.randn(*shape).astype(np.float32)
def run(model):
self.ws.run(model.InitProto())
self.ws.create_blob(model.Proto().external_input[0]).feed(X)
self.ws.run(model.Proto())
return self.ws.blobs[model.Proto().external_output[0]].fetch()
np.testing.assert_allclose(run(cpu_model), run(mkl_model),
atol=1e-4, rtol=1e-4)
def test_mkl_multi_output_rewrite(self):
cpu_model, shapes = double_matmul()
cpu_model = deterministic_io(cpu_model)
mkl_model = rewrite_graph.rewrite_model_helper_simple(cpu_model)
np.random.seed(1701)
Xs = [np.random.randn(*shape).astype(np.float32) for shape in shapes]
def run(model):
self.ws.run(model.InitProto())
for (name, X) in zip(model.Proto().external_input, Xs):
self.ws.create_blob(name).feed(X)
print(model.Proto())
self.ws.run(model.Proto())
return [self.ws.blobs[name].fetch()
for name in model.Proto().external_output]
run(mkl_model)
np.testing.assert_allclose(run(cpu_model), run(mkl_model),
atol=1e-4, rtol=1e-4)
def test_mkl_alexnet_rewrite(self):
cpu_model, (shape,) = alexnet()
cpu_model = deterministic_io(cpu_model)
mkl_model = rewrite_graph.rewrite_model_helper_simple(cpu_model)
np.random.seed(1701)
X = np.random.randn(*shape).astype(np.float32)
def run(model):
self.ws.run(model.InitProto())
self.ws.create_blob(model.Proto().external_input[0]).feed(X)
self.ws.run(model.Proto())
return self.ws.blobs[model.Proto().external_output[0]].fetch()
np.testing.assert_allclose(run(cpu_model), run(mkl_model),
atol=1e-4, rtol=1e-4)
if __name__ == "__main__":
import unittest
unittest.main()