import unittest
from caffe2.python import workspace, brew, model_helper
from caffe2.python.modeling.compute_histogram_for_blobs import (
ComputeHistogramForBlobs
)
import numpy as np
class ComputeHistogramForBlobsTest(unittest.TestCase):
def histogram(self, X, lower_bound=0.0, upper_bound=1.0, num_buckets=20):
assert X.ndim == 2, ('this test assume 2d array, but X.ndim is {0}'.
format(X.ndim))
N, M = X.shape
hist = np.zeros((num_buckets + 2, ), dtype=np.int32)
segment = (upper_bound - lower_bound) / num_buckets
Y = np.zeros((N, M), dtype=np.int32)
Y[X < lower_bound] = 0
Y[X >= upper_bound] = num_buckets + 1
Y[(X >= lower_bound) & (X < upper_bound)] = \
((X[(X >= lower_bound) & (X < upper_bound)] - lower_bound) /
segment + 1).astype(np.int32)
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
hist[Y[i][j]] += 1
cur_hist = hist.astype(np.float32) / (N * M)
acc_hist = cur_hist
return [cur_hist, acc_hist]
def test_compute_histogram_for_blobs(self):
model = model_helper.ModelHelper(name="test")
data = model.net.AddExternalInput("data")
fc1 = brew.fc(model, data, "fc1", dim_in=4, dim_out=2)
# no operator name set, will use default
brew.fc(model, fc1, "fc2", dim_in=2, dim_out=1)
num_buckets = 20
lower_bound = 0.2
upper_bound = 0.8
accumulate = False
net_modifier = ComputeHistogramForBlobs(blobs=['fc1_w', 'fc2_w'],
logging_frequency=10,
num_buckets=num_buckets,
lower_bound=lower_bound,
upper_bound=upper_bound,
accumulate=accumulate)
net_modifier(model.net)
workspace.FeedBlob('data', np.random.rand(10, 4).astype(np.float32))
workspace.RunNetOnce(model.param_init_net)
workspace.RunNetOnce(model.net)
fc1_w = workspace.FetchBlob('fc1_w')
fc1_w_curr_normalized_hist = workspace.FetchBlob('fc1_w_curr_normalized_hist')
cur_hist, acc_hist = self.histogram(fc1_w,
lower_bound=lower_bound,
upper_bound=upper_bound,
num_buckets=num_buckets)
self.assertEqual(fc1_w_curr_normalized_hist.size, num_buckets + 2)
self.assertAlmostEqual(np.linalg.norm(
fc1_w_curr_normalized_hist - cur_hist), 0.0, delta=1e-5)
self.assertEqual(len(model.net.Proto().op), 12)
assert model.net.output_record() is None
def test_compute_histogram_for_blobs_modify_output_record(self):
model = model_helper.ModelHelper(name="test")
data = model.net.AddExternalInput("data")
fc1 = brew.fc(model, data, "fc1", dim_in=4, dim_out=2)
# no operator name set, will use default
brew.fc(model, fc1, "fc2", dim_in=2, dim_out=1)
num_buckets = 20
lower_bound = 0.2
upper_bound = 0.8
accumulate = False
net_modifier = ComputeHistogramForBlobs(blobs=['fc1_w', 'fc2_w'],
logging_frequency=10,
num_buckets=num_buckets,
lower_bound=lower_bound,
upper_bound=upper_bound,
accumulate=accumulate)
net_modifier(model.net, modify_output_record=True)
workspace.FeedBlob('data', np.random.rand(10, 4).astype(np.float32))
workspace.RunNetOnce(model.param_init_net)
workspace.RunNetOnce(model.net)
fc1_w = workspace.FetchBlob('fc1_w')
fc1_w_curr_normalized_hist = workspace.FetchBlob('fc1_w_curr_normalized_hist')
cur_hist, acc_hist = self.histogram(fc1_w,
lower_bound=lower_bound,
upper_bound=upper_bound,
num_buckets=num_buckets)
self.assertEqual(fc1_w_curr_normalized_hist.size, num_buckets + 2)
self.assertAlmostEqual(np.linalg.norm(
fc1_w_curr_normalized_hist - cur_hist), 0.0, delta=1e-5)
self.assertEqual(len(model.net.Proto().op), 12)
assert 'fc1_w' + net_modifier.field_name_suffix() in\
model.net.output_record().field_blobs(),\
model.net.output_record().field_blobs()
assert 'fc2_w' + net_modifier.field_name_suffix() in\
model.net.output_record().field_blobs(),\
model.net.output_record().field_blobs()