from caffe2.python import core
from caffe2.proto import caffe2_pb2
from caffe2.python.optimizer import get_param_device
from caffe2.python.modeling.net_modifier import NetModifier
import logging
logger = logging.getLogger(__name__)
class GradientClipping(NetModifier):
L1_NORM = 'l1_norm'
L2_NORM = 'l2_norm'
BY_NORM = 'by_norm'
BY_VALUE = 'by_value'
GRAD_CLIP_METHODS = [BY_NORM, BY_VALUE]
CLIP_GRADIENT_NORM_TYPES = [L2_NORM, L1_NORM]
def __init__(self, grad_clip_method, clip_norm_type='l2_norm',
clip_threshold=0.1, use_parameter_norm=False,
compute_norm_ratio=False, clip_max=1, clip_min=-1,
blobs_to_include=None, blobs_to_exclude=None):
"""
Clips gradient to avoid gradient magnitude explosion or vanishing gradient.
Args:
grad_clip_method: ways to clip the gradients
clip_norm_type: type of norm used in the necessary computation
clip_threshold: threshold used to determine whether to clip
use_parameter_norm: a boolean to indicate whether to incorporate
the norm of the parameter
compute_norm_ratio: a boolean to compute the ratio between gradient norm
and parameter norm explicitly for debugging purpose
clip_max: when clipping by_value, any value that is greater than
clip_max will be clipped to clip_max
clip_min: when clipping by_value, any value that is smaller than
clip_min will be clipped to clip_min
blobs_to_include: names of blobs whose gradient is to be clipped. If it is set
to none, all param 's gradient in grad_map will be clipped.
blobs_to_exclude: names of blobs whose gradient is not to be clipped.
"""
assert grad_clip_method in self.GRAD_CLIP_METHODS, (
"This method of clipping, {}, has not been implemented.".format(
clip_norm_type))
if clip_norm_type is not None:
assert clip_norm_type in self.CLIP_GRADIENT_NORM_TYPES, (
"This method of clipping, {}, has not been implemented.".format(
clip_norm_type))
self.grad_clip_method = grad_clip_method
self.clip_norm_type = clip_norm_type
self.clip_threshold = float(clip_threshold)
self.use_parameter_norm = use_parameter_norm
self.compute_norm_ratio = compute_norm_ratio
self.clip_max = float(clip_max)
self.clip_min = float(clip_min)
self.blobs_to_include = blobs_to_include
self.blobs_to_exclude = blobs_to_exclude
def modify_net(self, net, init_net=None, grad_map=None, blob_to_device=None,
modify_output_record=False):
assert grad_map is not None
CPU = core.DeviceOption(caffe2_pb2.CPU)
final_param_map = {}
if self.blobs_to_include is None:
final_param_map = grad_map
else:
for blob in self.blobs_to_include:
param = core.BlobReference(blob)
if not net.BlobIsDefined(param):
raise Exception('param {0} is not defined in net {1}'.format(
param, net.Name()))
final_param_map[param] = grad_map[param]
if self.blobs_to_exclude is not None:
for blob in self.blobs_to_exclude:
final_param_map.pop(blob, None)
for param, grad in final_param_map.items():
# currently sparse gradients won't be clipped
# further implementation is needed to enable it
if isinstance(grad, core.GradientSlice):
continue
device = get_param_device(
param,
grad_map[str(param)],
param_to_device=blob_to_device,
default_device=CPU,
)
with core.DeviceScope(device):
if self.grad_clip_method == self.BY_NORM:
if self.clip_norm_type == self.L2_NORM:
p = 2
elif self.clip_norm_type == self.L1_NORM:
p = 1
grad_norm = net.LpNorm(
[grad],
net.NextScopedBlob(prefix=str(grad) + '_l{}_norm'.format(p)),
p=p,
)
if p == 2:
grad_norm = net.Pow([grad_norm], exponent=0.5)
op_inputs = [grad, grad_norm]
if self.use_parameter_norm:
param_norm = net.LpNorm(
[param],
net.NextScopedBlob(
prefix=str(param) + '_l{}_norm'.format(p)),
p=p,
)
if p == 2:
param_norm = net.Pow([param_norm], exponent=0.5)
op_inputs.append(param_norm)
if self.compute_norm_ratio:
net.Div(
[grad_norm, param_norm],
[net.NextScopedBlob(
prefix=str(param) + "_norm_ratio")]
)
net.ClipTensorByScaling(
op_inputs,
[grad],
threshold=self.clip_threshold,
)
elif self.grad_clip_method == self.BY_VALUE:
net.Clip(
[grad],
[grad],
max=self.clip_max,
min=self.clip_min,
)