Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

neilisaac / torch   python

Repository URL to install this package:

Version: 1.8.0 

/ python / modeling / gradient_clipping.py






from caffe2.python import core
from caffe2.proto import caffe2_pb2
from caffe2.python.optimizer import get_param_device
from caffe2.python.modeling.net_modifier import NetModifier

import logging

logger = logging.getLogger(__name__)


class GradientClipping(NetModifier):

    L1_NORM = 'l1_norm'
    L2_NORM = 'l2_norm'

    BY_NORM = 'by_norm'
    BY_VALUE = 'by_value'

    GRAD_CLIP_METHODS = [BY_NORM, BY_VALUE]
    CLIP_GRADIENT_NORM_TYPES = [L2_NORM, L1_NORM]

    def __init__(self, grad_clip_method, clip_norm_type='l2_norm',
                clip_threshold=0.1, use_parameter_norm=False,
                compute_norm_ratio=False, clip_max=1, clip_min=-1,
                blobs_to_include=None, blobs_to_exclude=None):
        """
        Clips gradient to avoid gradient magnitude explosion or vanishing gradient.

        Args:
        grad_clip_method: ways to clip the gradients
        clip_norm_type: type of norm used in the necessary computation
        clip_threshold: threshold used to determine whether to clip
        use_parameter_norm: a boolean to indicate whether to incorporate
            the norm of the parameter
        compute_norm_ratio: a boolean to compute the ratio between gradient norm
            and parameter norm explicitly for debugging purpose
        clip_max: when clipping by_value, any value that is greater than
            clip_max will be clipped to clip_max
        clip_min: when clipping by_value, any value that is smaller than
            clip_min will be clipped to clip_min
        blobs_to_include: names of blobs whose gradient is to be clipped. If it is set
            to none, all param 's gradient in grad_map will be clipped.
        blobs_to_exclude: names of blobs whose gradient is not to be clipped.
        """

        assert grad_clip_method in self.GRAD_CLIP_METHODS, (
            "This method of clipping, {}, has not been implemented.".format(
                clip_norm_type))
        if clip_norm_type is not None:
            assert clip_norm_type in self.CLIP_GRADIENT_NORM_TYPES, (
                "This method of clipping, {}, has not been implemented.".format(
                    clip_norm_type))

        self.grad_clip_method = grad_clip_method
        self.clip_norm_type = clip_norm_type
        self.clip_threshold = float(clip_threshold)
        self.use_parameter_norm = use_parameter_norm
        self.compute_norm_ratio = compute_norm_ratio
        self.clip_max = float(clip_max)
        self.clip_min = float(clip_min)
        self.blobs_to_include = blobs_to_include
        self.blobs_to_exclude = blobs_to_exclude

    def modify_net(self, net, init_net=None, grad_map=None, blob_to_device=None,
                   modify_output_record=False):

        assert grad_map is not None

        CPU = core.DeviceOption(caffe2_pb2.CPU)

        final_param_map = {}
        if self.blobs_to_include is None:
            final_param_map = grad_map
        else:
            for blob in self.blobs_to_include:
                param = core.BlobReference(blob)
                if not net.BlobIsDefined(param):
                    raise Exception('param {0} is not defined in net {1}'.format(
                        param, net.Name()))
                final_param_map[param] = grad_map[param]

        if self.blobs_to_exclude is not None:
            for blob in self.blobs_to_exclude:
                final_param_map.pop(blob, None)

        for param, grad in final_param_map.items():
            # currently sparse gradients won't be clipped
            # further implementation is needed to enable it
            if isinstance(grad, core.GradientSlice):
                continue

            device = get_param_device(
                param,
                grad_map[str(param)],
                param_to_device=blob_to_device,
                default_device=CPU,
            )

            with core.DeviceScope(device):
                if self.grad_clip_method == self.BY_NORM:
                    if self.clip_norm_type == self.L2_NORM:
                        p = 2
                    elif self.clip_norm_type == self.L1_NORM:
                        p = 1

                    grad_norm = net.LpNorm(
                        [grad],
                        net.NextScopedBlob(prefix=str(grad) + '_l{}_norm'.format(p)),
                        p=p,
                    )

                    if p == 2:
                        grad_norm = net.Pow([grad_norm], exponent=0.5)

                    op_inputs = [grad, grad_norm]

                    if self.use_parameter_norm:
                        param_norm = net.LpNorm(
                            [param],
                            net.NextScopedBlob(
                                prefix=str(param) + '_l{}_norm'.format(p)),
                            p=p,
                        )

                        if p == 2:
                            param_norm = net.Pow([param_norm], exponent=0.5)

                        op_inputs.append(param_norm)

                        if self.compute_norm_ratio:
                            net.Div(
                                [grad_norm, param_norm],
                                [net.NextScopedBlob(
                                    prefix=str(param) + "_norm_ratio")]
                            )

                    net.ClipTensorByScaling(
                        op_inputs,
                        [grad],
                        threshold=self.clip_threshold,
                    )
                elif self.grad_clip_method == self.BY_VALUE:
                    net.Clip(
                        [grad],
                        [grad],
                        max=self.clip_max,
                        min=self.clip_min,
                    )