Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

neilisaac / torch   python

Repository URL to install this package:

Version: 1.8.0 

/ python / models / seq2seq / seq2seq_util.py

## @package seq2seq_util
# Module caffe2.python.examples.seq2seq_util
""" A bunch of util functions to build Seq2Seq models with Caffe2."""






import collections
from future.utils import viewitems

import caffe2.proto.caffe2_pb2 as caffe2_pb2
from caffe2.python import attention, core, rnn_cell, brew


PAD_ID = 0
PAD = '<PAD>'
GO_ID = 1
GO = '<GO>'
EOS_ID = 2
EOS = '<EOS>'
UNK_ID = 3
UNK = '<UNK>'


def gen_vocab(corpus, unk_threshold):
    vocab = collections.defaultdict(lambda: len(vocab))
    freqs = collections.defaultdict(lambda: 0)
    # Adding padding tokens to the vocabulary to maintain consistency with IDs
    vocab[PAD]
    vocab[GO]
    vocab[EOS]
    vocab[UNK]

    with open(corpus) as f:
        for sentence in f:
            tokens = sentence.strip().split()
            for token in tokens:
                freqs[token] += 1
    for token, freq in viewitems(freqs):
        if freq > unk_threshold:
            vocab[token]

    return vocab


def get_numberized_sentence(sentence, vocab):
    numerized_sentence = []
    for token in sentence.strip().split():
        if token in vocab:
            numerized_sentence.append(vocab[token])
        else:
            numerized_sentence.append(vocab[UNK])
    return numerized_sentence


def rnn_unidirectional_layer(
    model,
    inputs,
    input_lengths,
    input_size,
    num_units,
    dropout_keep_prob,
    forward_only,
    return_sequence_output,
    return_final_state,
    scope=None,
):
    """ Unidirectional LSTM encoder."""
    with core.NameScope(scope):
        initial_cell_state = model.param_init_net.ConstantFill(
            [],
            'initial_cell_state',
            shape=[num_units],
            value=0.0,
        )
        initial_hidden_state = model.param_init_net.ConstantFill(
            [],
            'initial_hidden_state',
            shape=[num_units],
            value=0.0,
        )

    cell = rnn_cell.LSTMCell(
        input_size=input_size,
        hidden_size=num_units,
        forget_bias=0.0,
        memory_optimization=False,
        name=(scope + '/' if scope else '') + 'lstm',
        forward_only=forward_only,
    )

    dropout_ratio = (
        None if dropout_keep_prob is None else (1.0 - dropout_keep_prob)
    )
    if dropout_ratio is not None:
        cell = rnn_cell.DropoutCell(
            internal_cell=cell,
            dropout_ratio=dropout_ratio,
            name=(scope + '/' if scope else '') + 'dropout',
            forward_only=forward_only,
            is_test=False,
        )

    outputs_with_grads = []
    if return_sequence_output:
        outputs_with_grads.append(0)
    if return_final_state:
        outputs_with_grads.extend([1, 3])

    outputs, (_, final_hidden_state, _, final_cell_state) = (
        cell.apply_over_sequence(
            model=model,
            inputs=inputs,
            seq_lengths=input_lengths,
            initial_states=(initial_hidden_state, initial_cell_state),
            outputs_with_grads=outputs_with_grads,
        )
    )
    return outputs, final_hidden_state, final_cell_state


def rnn_bidirectional_layer(
    model,
    inputs,
    input_lengths,
    input_size,
    num_units,
    dropout_keep_prob,
    forward_only,
    return_sequence_output,
    return_final_state,
    scope=None,
):
    outputs_fw, final_hidden_fw, final_cell_fw = rnn_unidirectional_layer(
        model,
        inputs,
        input_lengths,
        input_size,
        num_units,
        dropout_keep_prob,
        forward_only,
        return_sequence_output,
        return_final_state,
        scope=(scope + '/' if scope else '') + 'fw',
    )
    with core.NameScope(scope):
        reversed_inputs = model.net.ReversePackedSegs(
            [inputs, input_lengths],
            ['reversed_inputs'],
        )
    outputs_bw, final_hidden_bw, final_cell_bw = rnn_unidirectional_layer(
        model,
        reversed_inputs,
        input_lengths,
        input_size,
        num_units,
        dropout_keep_prob,
        forward_only,
        return_sequence_output,
        return_final_state,
        scope=(scope + '/' if scope else '') + 'bw',
    )
    with core.NameScope(scope):
        outputs_bw = model.net.ReversePackedSegs(
            [outputs_bw, input_lengths],
            ['outputs_bw'],
        )

    # Concatenate forward and backward results
    if return_sequence_output:
        with core.NameScope(scope):
            outputs, _ = model.net.Concat(
                [outputs_fw, outputs_bw],
                ['outputs', 'outputs_dim'],
                axis=2,
            )
    else:
        outputs = None

    if return_final_state:
        with core.NameScope(scope):
            final_hidden_state, _ = model.net.Concat(
                [final_hidden_fw, final_hidden_bw],
                ['final_hidden_state', 'final_hidden_state_dim'],
                axis=2,
            )
            final_cell_state, _ = model.net.Concat(
                [final_cell_fw, final_cell_bw],
                ['final_cell_state', 'final_cell_state_dim'],
                axis=2,
            )
    else:
        final_hidden_state = None
        final_cell_state = None

    return outputs, final_hidden_state, final_cell_state


def build_embeddings(
    model,
    vocab_size,
    embedding_size,
    name,
    freeze_embeddings,
):
    embeddings = model.param_init_net.GaussianFill(
        [],
        name,
        shape=[vocab_size, embedding_size],
        std=0.1,
    )
    if not freeze_embeddings:
        model.params.append(embeddings)
    return embeddings


def get_layer_scope(scope, layer_type, i):
    prefix = (scope + '/' if scope else '') + layer_type
    return '{}/layer{}'.format(prefix, i)


def build_embedding_encoder(
    model,
    encoder_params,
    num_decoder_layers,
    inputs,
    input_lengths,
    vocab_size,
    embeddings,
    embedding_size,
    use_attention,
    num_gpus=0,
    forward_only=False,
    scope=None,
):
    with core.NameScope(scope or ''):
        if num_gpus == 0:
            embedded_encoder_inputs = model.net.Gather(
                [embeddings, inputs],
                ['embedded_encoder_inputs'],
            )
        else:
            with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
                embedded_encoder_inputs_cpu = model.net.Gather(
                    [embeddings, inputs],
                    ['embedded_encoder_inputs_cpu'],
                )
            embedded_encoder_inputs = model.CopyCPUToGPU(
                embedded_encoder_inputs_cpu,
                'embedded_encoder_inputs',
            )

    layer_inputs = embedded_encoder_inputs
    layer_input_size = embedding_size
    encoder_units_per_layer = []
    final_encoder_hidden_states = []
    final_encoder_cell_states = []

    num_encoder_layers = len(encoder_params['encoder_layer_configs'])
    use_bidirectional_encoder = encoder_params.get(
        'use_bidirectional_encoder',
        False,
    )

    for i, layer_config in enumerate(encoder_params['encoder_layer_configs']):

        if use_bidirectional_encoder and i == 0:
            layer_func = rnn_bidirectional_layer
            output_dims = 2 * layer_config['num_units']
        else:
            layer_func = rnn_unidirectional_layer
            output_dims = layer_config['num_units']
        encoder_units_per_layer.append(output_dims)

        is_final_layer = (i == num_encoder_layers - 1)

        dropout_keep_prob = layer_config.get(
            'dropout_keep_prob',
            None,
        )

        return_final_state = i >= (num_encoder_layers - num_decoder_layers)
        (
            layer_outputs,
            final_layer_hidden_state,
            final_layer_cell_state,
        ) = layer_func(
            model=model,
            inputs=layer_inputs,
            input_lengths=input_lengths,
            input_size=layer_input_size,
            num_units=layer_config['num_units'],
            dropout_keep_prob=dropout_keep_prob,
            forward_only=forward_only,
            return_sequence_output=(not is_final_layer) or use_attention,
            return_final_state=return_final_state,
            scope=get_layer_scope(scope, 'encoder', i),
        )

        if not is_final_layer:
            layer_inputs = layer_outputs
            layer_input_size = output_dims
        final_encoder_hidden_states.append(final_layer_hidden_state)
        final_encoder_cell_states.append(final_layer_cell_state)

    encoder_outputs = layer_outputs
    weighted_encoder_outputs = None

    return (
        encoder_outputs,
        weighted_encoder_outputs,
        final_encoder_hidden_states,
        final_encoder_cell_states,
        encoder_units_per_layer,
    )


class LSTMWithAttentionDecoder(object):

    def scope(self, name):
        return self.name + '/' + name if self.name is not None else name

    def _get_attention_type(self, attention_type_as_string):
        if attention_type_as_string == 'regular':
            return attention.AttentionType.Regular
        elif attention_type_as_string == 'recurrent':
            return attention.AttentionType.Recurrent
        else:
            assert False, 'Unknown type ' + attention_type_as_string

    def __init__(
        self,
        encoder_outputs,
        encoder_output_dim,
        encoder_lengths,
        vocab_size,
        attention_type,
        embedding_size,
        decoder_num_units,
        decoder_cells,
        residual_output_layers=None,
        name=None,
        weighted_encoder_outputs=None,
Loading ...