from caffe2.python import core
from hypothesis import given, settings
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
import hypothesis.strategies as st
import numpy as np
# Reference implementation from detectron/lib/utils/boxes.py
def bbox_transform(boxes, deltas, weights=(1.0, 1.0, 1.0, 1.0)):
"""Forward transform that maps proposal boxes to predicted ground-truth
boxes using bounding-box regression deltas. See bbox_transform_inv for a
description of the weights argument.
"""
if boxes.shape[0] == 0:
return np.zeros((0, deltas.shape[1]), dtype=deltas.dtype)
boxes = boxes.astype(deltas.dtype, copy=False)
widths = boxes[:, 2] - boxes[:, 0] + 1.0
heights = boxes[:, 3] - boxes[:, 1] + 1.0
ctr_x = boxes[:, 0] + 0.5 * widths
ctr_y = boxes[:, 1] + 0.5 * heights
wx, wy, ww, wh = weights
dx = deltas[:, 0::4] / wx
dy = deltas[:, 1::4] / wy
dw = deltas[:, 2::4] / ww
dh = deltas[:, 3::4] / wh
# Prevent sending too large values into np.exp()
BBOX_XFORM_CLIP = np.log(1000. / 16.)
dw = np.minimum(dw, BBOX_XFORM_CLIP)
dh = np.minimum(dh, BBOX_XFORM_CLIP)
pred_ctr_x = dx * widths[:, np.newaxis] + ctr_x[:, np.newaxis]
pred_ctr_y = dy * heights[:, np.newaxis] + ctr_y[:, np.newaxis]
pred_w = np.exp(dw) * widths[:, np.newaxis]
pred_h = np.exp(dh) * heights[:, np.newaxis]
pred_boxes = np.zeros(deltas.shape, dtype=deltas.dtype)
# x1
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w
# y1
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h
# x2 (note: "- 1" is correct; don't be fooled by the asymmetry)
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w - 1
# y2 (note: "- 1" is correct; don't be fooled by the asymmetry)
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h - 1
return pred_boxes
# Reference implementation from detectron/lib/utils/boxes.py
def clip_tiled_boxes(boxes, im_shape):
"""Clip boxes to image boundaries. im_shape is [height, width] and boxes
has shape (N, 4 * num_tiled_boxes)."""
assert (
boxes.shape[1] % 4 == 0
), "boxes.shape[1] is {:d}, but must be divisible by 4.".format(
boxes.shape[1]
)
# x1 >= 0
boxes[:, 0::4] = np.maximum(np.minimum(boxes[:, 0::4], im_shape[1] - 1), 0)
# y1 >= 0
boxes[:, 1::4] = np.maximum(np.minimum(boxes[:, 1::4], im_shape[0] - 1), 0)
# x2 < im_shape[1]
boxes[:, 2::4] = np.maximum(np.minimum(boxes[:, 2::4], im_shape[1] - 1), 0)
# y2 < im_shape[0]
boxes[:, 3::4] = np.maximum(np.minimum(boxes[:, 3::4], im_shape[0] - 1), 0)
return boxes
def generate_rois(roi_counts, im_dims):
assert len(roi_counts) == len(im_dims)
all_rois = []
for i, num_rois in enumerate(roi_counts):
if num_rois == 0:
continue
# [batch_idx, x1, y1, x2, y2]
rois = np.random.uniform(0, im_dims[i], size=(roi_counts[i], 5)).astype(
np.float32
)
rois[:, 0] = i # batch_idx
# Swap (x1, x2) if x1 > x2
rois[:, 1], rois[:, 3] = (
np.minimum(rois[:, 1], rois[:, 3]),
np.maximum(rois[:, 1], rois[:, 3]),
)
# Swap (y1, y2) if y1 > y2
rois[:, 2], rois[:, 4] = (
np.minimum(rois[:, 2], rois[:, 4]),
np.maximum(rois[:, 2], rois[:, 4]),
)
all_rois.append(rois)
if len(all_rois) > 0:
return np.vstack(all_rois)
return np.empty((0, 5)).astype(np.float32)
def bbox_transform_rotated(
boxes,
deltas,
weights=(1.0, 1.0, 1.0, 1.0),
angle_bound_on=True,
angle_bound_lo=-90,
angle_bound_hi=90,
):
"""
Similar to bbox_transform but for rotated boxes with angle info.
"""
if boxes.shape[0] == 0:
return np.zeros((0, deltas.shape[1]), dtype=deltas.dtype)
boxes = boxes.astype(deltas.dtype, copy=False)
ctr_x = boxes[:, 0]
ctr_y = boxes[:, 1]
widths = boxes[:, 2]
heights = boxes[:, 3]
angles = boxes[:, 4]
wx, wy, ww, wh = weights
dx = deltas[:, 0::5] / wx
dy = deltas[:, 1::5] / wy
dw = deltas[:, 2::5] / ww
dh = deltas[:, 3::5] / wh
da = deltas[:, 4::5] * 180.0 / np.pi
# Prevent sending too large values into np.exp()
BBOX_XFORM_CLIP = np.log(1000. / 16.)
dw = np.minimum(dw, BBOX_XFORM_CLIP)
dh = np.minimum(dh, BBOX_XFORM_CLIP)
pred_boxes = np.zeros(deltas.shape, dtype=deltas.dtype)
pred_boxes[:, 0::5] = dx * widths[:, np.newaxis] + ctr_x[:, np.newaxis]
pred_boxes[:, 1::5] = dy * heights[:, np.newaxis] + ctr_y[:, np.newaxis]
pred_boxes[:, 2::5] = np.exp(dw) * widths[:, np.newaxis]
pred_boxes[:, 3::5] = np.exp(dh) * heights[:, np.newaxis]
pred_angle = da + angles[:, np.newaxis]
if angle_bound_on:
period = angle_bound_hi - angle_bound_lo
assert period % 180 == 0
pred_angle[np.where(pred_angle < angle_bound_lo)] += period
pred_angle[np.where(pred_angle > angle_bound_hi)] -= period
pred_boxes[:, 4::5] = pred_angle
return pred_boxes
def clip_tiled_boxes_rotated(boxes, im_shape, angle_thresh=1.0):
"""
Similar to clip_tiled_boxes but for rotated boxes with angle info.
Only clips almost horizontal boxes within angle_thresh. The rest are
left unchanged.
"""
assert (
boxes.shape[1] % 5 == 0
), "boxes.shape[1] is {:d}, but must be divisible by 5.".format(
boxes.shape[1]
)
(H, W) = im_shape[:2]
# Filter boxes that are almost upright within angle_thresh tolerance
idx = np.where(np.abs(boxes[:, 4::5]) <= angle_thresh)
idx5 = idx[1] * 5
# convert to (x1, y1, x2, y2)
x1 = boxes[idx[0], idx5] - (boxes[idx[0], idx5 + 2] - 1) / 2.0
y1 = boxes[idx[0], idx5 + 1] - (boxes[idx[0], idx5 + 3] - 1) / 2.0
x2 = boxes[idx[0], idx5] + (boxes[idx[0], idx5 + 2] - 1) / 2.0
y2 = boxes[idx[0], idx5 + 1] + (boxes[idx[0], idx5 + 3] - 1) / 2.0
# clip
x1 = np.maximum(np.minimum(x1, W - 1), 0)
y1 = np.maximum(np.minimum(y1, H - 1), 0)
x2 = np.maximum(np.minimum(x2, W - 1), 0)
y2 = np.maximum(np.minimum(y2, H - 1), 0)
# convert back to (xc, yc, w, h)
boxes[idx[0], idx5] = (x1 + x2) / 2.0
boxes[idx[0], idx5 + 1] = (y1 + y2) / 2.0
boxes[idx[0], idx5 + 2] = x2 - x1 + 1
boxes[idx[0], idx5 + 3] = y2 - y1 + 1
return boxes
def generate_rois_rotated(roi_counts, im_dims):
rois = generate_rois(roi_counts, im_dims)
# [batch_id, ctr_x, ctr_y, w, h, angle]
rotated_rois = np.empty((rois.shape[0], 6)).astype(np.float32)
rotated_rois[:, 0] = rois[:, 0] # batch_id
rotated_rois[:, 1] = (rois[:, 1] + rois[:, 3]) / 2. # ctr_x = (x1 + x2) / 2
rotated_rois[:, 2] = (rois[:, 2] + rois[:, 4]) / 2. # ctr_y = (y1 + y2) / 2
rotated_rois[:, 3] = rois[:, 3] - rois[:, 1] + 1.0 # w = x2 - x1 + 1
rotated_rois[:, 4] = rois[:, 4] - rois[:, 2] + 1.0 # h = y2 - y1 + 1
rotated_rois[:, 5] = np.random.uniform(-90.0, 90.0) # angle in degrees
return rotated_rois
class TestBBoxTransformOp(serial.SerializedTestCase):
@given(
num_rois=st.integers(1, 10),
num_classes=st.integers(1, 10),
im_dim=st.integers(100, 600),
skip_batch_id=st.booleans(),
rotated=st.booleans(),
angle_bound_on=st.booleans(),
clip_angle_thresh=st.sampled_from([-1.0, 1.0]),
**hu.gcs_cpu_only
)
@settings(deadline=1000)
def test_bbox_transform(
self,
num_rois,
num_classes,
im_dim,
skip_batch_id,
rotated,
angle_bound_on,
clip_angle_thresh,
gc,
dc,
):
"""
Test with all rois belonging to a single image per run.
"""
rois = (
generate_rois_rotated([num_rois], [im_dim])
if rotated
else generate_rois([num_rois], [im_dim])
)
box_dim = 5 if rotated else 4
if skip_batch_id:
rois = rois[:, 1:]
deltas = np.random.randn(num_rois, box_dim * num_classes).astype(np.float32)
im_info = np.array([im_dim, im_dim, 1.0]).astype(np.float32).reshape(1, 3)
def bbox_transform_ref(rois, deltas, im_info):
boxes = rois if rois.shape[1] == box_dim else rois[:, 1:]
im_shape = im_info[0, 0:2]
if rotated:
box_out = bbox_transform_rotated(
boxes, deltas, angle_bound_on=angle_bound_on
)
box_out = clip_tiled_boxes_rotated(
box_out, im_shape, angle_thresh=clip_angle_thresh
)
else:
box_out = bbox_transform(boxes, deltas)
box_out = clip_tiled_boxes(box_out, im_shape)
return [box_out]
op = core.CreateOperator(
"BBoxTransform",
["rois", "deltas", "im_info"],
["box_out"],
apply_scale=False,
correct_transform_coords=True,
rotated=rotated,
angle_bound_on=angle_bound_on,
clip_angle_thresh=clip_angle_thresh,
)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[rois, deltas, im_info],
reference=bbox_transform_ref,
)
@given(
roi_counts=st.lists(st.integers(0, 5), min_size=1, max_size=10),
num_classes=st.integers(1, 10),
rotated=st.booleans(),
angle_bound_on=st.booleans(),
clip_angle_thresh=st.sampled_from([-1.0, 1.0]),
**hu.gcs_cpu_only
)
@settings(deadline=1000)
def test_bbox_transform_batch(
self,
roi_counts,
num_classes,
rotated,
angle_bound_on,
clip_angle_thresh,
gc,
dc,
):
"""
Test with rois for multiple images in a batch
"""
batch_size = len(roi_counts)
total_rois = sum(roi_counts)
im_dims = np.random.randint(100, 600, batch_size)
rois = (
generate_rois_rotated(roi_counts, im_dims)
if rotated
else generate_rois(roi_counts, im_dims)
)
box_dim = 5 if rotated else 4
deltas = np.random.randn(total_rois, box_dim * num_classes).astype(np.float32)
im_info = np.zeros((batch_size, 3)).astype(np.float32)
im_info[:, 0] = im_dims
im_info[:, 1] = im_dims
im_info[:, 2] = 1.0
def bbox_transform_ref(rois, deltas, im_info):
box_out = []
offset = 0
for i, num_rois in enumerate(roi_counts):
if num_rois == 0:
continue
cur_boxes = rois[offset : offset + num_rois, 1:]
cur_deltas = deltas[offset : offset + num_rois]
im_shape = im_info[i, 0:2]
if rotated:
cur_box_out = bbox_transform_rotated(
cur_boxes, cur_deltas, angle_bound_on=angle_bound_on
)
cur_box_out = clip_tiled_boxes_rotated(
cur_box_out, im_shape, angle_thresh=clip_angle_thresh
)
else:
cur_box_out = bbox_transform(cur_boxes, cur_deltas)
cur_box_out = clip_tiled_boxes(cur_box_out, im_shape)
box_out.append(cur_box_out)
offset += num_rois
if len(box_out) > 0:
box_out = np.vstack(box_out)
else:
box_out = np.empty(deltas.shape).astype(np.float32)
return [box_out, roi_counts]
op = core.CreateOperator(
"BBoxTransform",
["rois", "deltas", "im_info"],
["box_out", "roi_batch_splits"],
Loading ...