Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

neilisaac / torch   python

Repository URL to install this package:

Version: 1.8.0 

/ python / operator_test / elementwise_ops_test.py






from caffe2.python import core, workspace
from hypothesis import given, assume, settings
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np

import unittest

class TestElementwiseOps(hu.HypothesisTestCase):

    @given(X=hu.tensor(dtype=np.float32), **hu.gcs)
    @settings(deadline=10000)
    def test_abs(self, X, gc, dc):
        op = core.CreateOperator(
            "Abs",
            ["X"],
            ["Y"],
        )

        def abs_ref(X):
            return [np.absolute(X)]

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=[X],
            reference=abs_ref,
            ensure_outputs_are_inferred=True,
        )
        self.assertDeviceChecks(dc, op, [X], [0])
        self.assertGradientChecks(gc, op, [X], 0, [0], ensure_outputs_are_inferred=True)

    @given(X=hu.tensor(dtype=np.float32), inplace=st.booleans(), **hu.gcs)
    @settings(deadline=10000)
    def test_exp(self, X, inplace, gc, dc):
        op = core.CreateOperator(
            "Exp",
            ["X"],
            ["X"] if inplace else ["Y"],
        )

        def exp_ref(X):
            return [np.exp(X)]

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=[X],
            reference=exp_ref,
            ensure_outputs_are_inferred=True,
        )
        self.assertDeviceChecks(dc, op, [X], [0])
        self.assertGradientChecks(gc, op, [X], 0, [0], ensure_outputs_are_inferred=True)

    @given(n=st.integers(0, 6), m=st.integers(4, 6),
           seed=st.integers(0, 1000), **hu.gcs)
    @settings(deadline=1000)
    def test_log(self, n, m, gc, dc, seed):
        np.random.seed(seed)
        X = np.random.rand(n, m).astype(np.float32) + 1.0

        def log_op(X):
            return [np.log(X)]

        op = core.CreateOperator(
            "Log",
            ["X"],
            ["Z"]
        )

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=[X],
            reference=log_op,
            ensure_outputs_are_inferred=True,
        )

        self.assertGradientChecks(
            gc, op, [X], 0, [0], stepsize=1e-4, threshold=1e-2,
            ensure_outputs_are_inferred=True)

    @given(n=st.integers(0, 10), m=st.integers(4, 6),
           d=st.integers(2, 3), seed=st.integers(0, 1000), **hu.gcs)
    @settings(deadline=10000)
    def test_powt(self, n, m, d, gc, dc, seed):
        np.random.seed(seed)
        X = np.random.rand(n, m, d).astype(np.float32) + 1.0
        Y = np.random.rand(n, m, d).astype(np.float32) + 2.0

        def powt_op(X, Y):
            return [np.power(X, Y)]

        #two gradients Y*X^(Y-1) and X^Y * ln(X)
        def powt_grad(g_out, outputs, fwd_inputs):
            [X, Y] = fwd_inputs
            Z = outputs[0]
            return ([Y * np.power(X, Y - 1), Z * np.log(X)] * g_out)

        op = core.CreateOperator(
            "Pow",
            ["X", "Y"],
            ["Z"]
        )

        self.assertReferenceChecks(device_option=gc,
                                   op=op,
                                   inputs=[X, Y],
                                   reference=powt_op,
                                   output_to_grad="Z",
                                   grad_reference=powt_grad,
                                   ensure_outputs_are_inferred=True)

    @given(n=st.integers(0, 6), m=st.integers(4, 6),
           seed=st.integers(0, 1000), **hu.gcs)
    @settings(deadline=10000)
    def test_sqr(self, n, m, gc, dc, seed):
        np.random.seed(seed)
        X = np.random.rand(n, m).astype(np.float32)

        def sqr_op(X):
            return [np.square(X)]

        op = core.CreateOperator(
            "Sqr",
            ["X"],
            ["Z"]
        )

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=[X],
            reference=sqr_op,
            ensure_outputs_are_inferred=True,
        )

        self.assertGradientChecks(
            gc, op, [X], 0, [0], stepsize=1e-4, threshold=1e-2,
            ensure_outputs_are_inferred=True)

    @given(
        X=hu.tensor(
            elements=hu.floats(min_value=0.1, max_value=10),
            # allow empty tensor
            min_value=0),
        inplace=st.booleans(),
        **hu.gcs
    )
    @settings(deadline=10000)
    def test_sqrt(self, X, inplace, gc, dc):
        def sqrt_op(X):
            return [np.sqrt(X)]

        op = core.CreateOperator(
            "Sqrt",
            ["X"],
            ["X"] if inplace else ["Y"]
        )

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=[X],
            reference=sqrt_op,
            ensure_outputs_are_inferred=True,
        )
        self.assertDeviceChecks(dc, op, [X], [0])
        # stepsize need to be smaller than the possible minimum X, so the
        # sqrt is well defined
        self.assertGradientChecks(
            gc, op, [X], 0, [0], stepsize=1e-2, ensure_outputs_are_inferred=True)

    @given(X=hu.tensor(dtype=np.float32), inplace=st.booleans(), **hu.gcs)
    @settings(deadline=10000)
    def test_softsign(self, X, inplace, gc, dc):
        op = core.CreateOperator(
            "Softsign",
            ["X"],
            ["X"] if inplace else ["Y"],
        )

        def softsign_ref(X):
            return [X / (1.0 + np.absolute(X))]

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=[X],
            reference=softsign_ref,
            ensure_outputs_are_inferred=True,
        )
        self.assertDeviceChecks(dc, op, [X], [0])
        if not inplace:
            self.assertGradientChecks(
                gc, op, [X], 0, [0],
                ensure_outputs_are_inferred=True,
            )

    @given(X=hu.tensor(elements=hu.floats(min_value=0.1, max_value=10.0), dtype=np.float32),
           inplace=st.booleans(), **hu.gcs)
    @settings(deadline=10000)
    def test_rsqrt(self, X, inplace, gc, dc):
        op = core.CreateOperator(
            "Rsqrt",
            ["X"],
            ["X"] if inplace else ["Y"],
        )

        def rsqrt_ref(X):
            return [1.0 / np.sqrt(X)]

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=[X],
            reference=rsqrt_ref,
            ensure_outputs_are_inferred=True,
        )
        self.assertDeviceChecks(dc, op, [X], [0])
        self.assertGradientChecks(
            gc, op, [X], 0, [0], stepsize=5e-3,
            ensure_outputs_are_inferred=True,
        )

    @given(X=hu.tensor(dtype=np.float32), **hu.gcs)
    @settings(deadline=10000)
    def test_cube(self, X, gc, dc):
        op = core.CreateOperator(
            "Cube",
            ["X"],
            ["Y"],
        )

        def cube_ref(X):
            return [np.power(X, 3)]

        def cube_grad_ref(g_out, outputs, fwd_inputs):
            dY = g_out
            [X] = fwd_inputs
            return [dY * np.square(X) * 3]

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=[X],
            reference=cube_ref,
            output_to_grad="Y",
            grad_reference=cube_grad_ref,
            ensure_outputs_are_inferred=True,
        )
        self.assertDeviceChecks(dc, op, [X], [0])

    @given(X=hu.tensor(dtype=np.float32), in_place=st.booleans(), **hu.gcs)
    @settings(deadline=10000)
    def test_cbrt(self, X, in_place, gc, dc):
        op = core.CreateOperator(
            "Cbrt",
            ["X"],
            ["X"] if in_place else ["Y"],
        )

        def cbrt_ref(X):
            return [np.cbrt(X)]

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=[X],
            reference=cbrt_ref,
            ensure_outputs_are_inferred=True,
        )

    @given(X=hu.tensor(elements=hu.floats(min_value=1.0, max_value=10.0), dtype=np.float32),
           in_place=st.booleans(), **hu.gcs)
    @settings(deadline=10000)
    def test_cbrt_grad(self, X, in_place, gc, dc):
        op = core.CreateOperator(
            "Cbrt",
            ["X"],
            ["X"] if in_place else ["Y"],
        )

        self.assertGradientChecks(
            gc, op, [X], 0, [0],
            ensure_outputs_are_inferred=True,
        )
        self.assertGradientChecks(
            gc, op, [-X], 0, [0],
            ensure_outputs_are_inferred=True,
        )


    @given(n=st.integers(0, 6), m=st.integers(4, 6),
           seed=st.integers(0, 1000), **hu.gcs)
    @settings(deadline=10000)
    def test_swish(self, n, m, gc, dc, seed):
        np.random.seed(seed)
        X = np.random.rand(n, m).astype(np.float32)

        def swish(X):
            return [np.divide(X, (1. + np.exp(-X)))]

        op = core.CreateOperator(
            "Swish",
            ["X"],
            ["Z"]
        )

        self.assertReferenceChecks(
            device_option=gc,
            op=op,
            inputs=[X],
            reference=swish,
            ensure_outputs_are_inferred=True,
        )

        self.assertGradientChecks(
            gc, op, [X], 0, [0], stepsize=1e-4, threshold=1e-2,
            ensure_outputs_are_inferred=True)

    @given(n=st.integers(0, 6), m=st.integers(4, 6),
           seed=st.integers(0, 1000), **hu.gcs)
    @settings(deadline=1000)
    def test_swish_gradient_inplace(self, n, m, gc, dc, seed):
        np.random.seed(seed)

        def swish(X):
            return [np.divide(X, (1. + np.exp(-X)))]

        def swish_gradient(X, Y, dY):
            return [dY * (Y + np.divide(1. - Y, 1. + np.exp(-X)))]

        X = np.random.rand(n, m).astype(np.float32)
        Y = swish(X)[0]
        dY = np.random.rand(n, m).astype(np.float32)
        op = core.CreateOperator(
            "SwishGradient",
            ["X", "Y", "grad"],
            "grad"
Loading ...