from caffe2.python import core, workspace
from hypothesis import assume, given, settings
from caffe2.proto import caffe2_pb2
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
import hypothesis.strategies as st
import numpy as np
import random
class TestUtilityOps(serial.SerializedTestCase):
@given(X=hu.tensor(), args=st.booleans(), **hu.gcs)
@settings(deadline=10000)
def test_slice(self, X, args, gc, dc):
X = X.astype(dtype=np.float32)
dim = random.randint(0, X.ndim - 1)
slice_start = random.randint(0, X.shape[dim] - 1)
slice_end = random.randint(slice_start, X.shape[dim] - 1)
starts = np.array([0] * X.ndim).astype(np.int32)
ends = np.array([-1] * X.ndim).astype(np.int32)
starts[dim] = slice_start
ends[dim] = slice_end
if args:
op = core.CreateOperator(
"Slice", ["X"], ["Y"], starts=starts, ends=ends, device_option=gc
)
def slice_ref(X):
slc = [slice(None)] * X.ndim
slc[dim] = slice(slice_start, slice_end)
return [X[slc]]
inputs = [X]
else:
op = core.CreateOperator(
"Slice", ["X", "starts", "ends"], ["Y"], device_option=gc
)
def slice_ref(x, starts, ends):
slc = [slice(None)] * x.ndim
slc[dim] = slice(slice_start, slice_end)
return [x[slc]]
inputs = [X, starts, ends]
self.assertReferenceChecks(gc, op, inputs, slice_ref)
self.assertDeviceChecks(dc, op, inputs, [0])
self.assertGradientChecks(
device_option=gc,
op=op,
inputs=inputs,
outputs_to_check=0,
outputs_with_grads=[0],
)
@given(ndims=st.integers(min_value=1, max_value=10), **hu.gcs)
@settings(deadline=10000)
def test_resize_like(self, ndims, gc, dc):
X = np.zeros((ndims * 2, ))
Y = np.zeros((ndims, 2))
op = core.CreateOperator(
"ResizeLike", ["X", "Y"], ["Z"],
)
def resize_like(X, Y):
return [X.reshape(Y.shape)]
self.assertDeviceChecks(dc, op, [X, Y], [0])
self.assertReferenceChecks(gc, op, [X, Y], resize_like, ensure_outputs_are_inferred=True)
@given(dtype=st.sampled_from([np.float32, np.int32]),
ndims=st.integers(min_value=1, max_value=5),
seed=st.integers(min_value=0, max_value=65536),
null_axes=st.booleans(),
engine=st.sampled_from(['CUDNN', None]),
**hu.gcs)
@settings(deadline=10000)
def test_transpose(self, dtype, ndims, seed, null_axes, engine, gc, dc):
if (gc.device_type == caffe2_pb2.CUDA and engine == "CUDNN"):
# cudnn 5.1 does not support int.
assume(workspace.GetCuDNNVersion() >= 6000 or dtype != np.int32)
dims = (np.random.rand(ndims) * 16 + 1).astype(np.int32)
X = (np.random.rand(*dims) * 16).astype(dtype)
if null_axes:
axes = None
op = core.CreateOperator(
"Transpose",
["input"], ["output"],
engine=engine)
else:
np.random.seed(int(seed))
axes = [int(v) for v in list(np.random.permutation(X.ndim))]
op = core.CreateOperator(
"Transpose",
["input"], ["output"],
axes=axes,
engine=engine)
def transpose_ref(x, axes):
return (np.transpose(x, axes),)
self.assertReferenceChecks(gc, op, [X, axes],
transpose_ref)
@given(m=st.integers(5, 10), n=st.integers(5, 10),
o=st.integers(5, 10), nans=st.booleans(), **hu.gcs)
@settings(deadline=10000)
def test_nan_check(self, m, n, o, nans, gc, dc):
other = np.array([1, 2, 3]).astype(np.float32)
X = np.random.rand(m, n, o).astype(np.float32)
if nans:
x_nan = np.random.randint(0, m)
y_nan = np.random.randint(0, n)
z_nan = np.random.randint(0, o)
X[x_nan, y_nan, z_nan] = float('NaN')
# print('nans: {}'.format(nans))
# print(X)
def nan_reference(X, Y):
if not np.isnan(X).any():
return [X]
else:
return [np.array([])]
op = core.CreateOperator(
"NanCheck",
["X", "other"],
["Y"]
)
try:
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[X, other],
reference=nan_reference,
)
if nans:
self.assertTrue(False, "Did not fail when presented with NaN!")
except RuntimeError:
self.assertTrue(nans, "No NaNs but failed")
try:
self.assertGradientChecks(
device_option=gc,
op=op,
inputs=[X],
outputs_to_check=0,
outputs_with_grads=[0],
)
if nans:
self.assertTrue(False, "Did not fail when gradient had NaN!")
except RuntimeError:
pass
@serial.given(n=st.integers(4, 5), m=st.integers(6, 7),
d=st.integers(2, 3), **hu.gcs)
def test_elementwise_max(self, n, m, d, gc, dc):
X = np.random.rand(n, m, d).astype(np.float32)
Y = np.random.rand(n, m, d).astype(np.float32)
Z = np.random.rand(n, m, d).astype(np.float32)
inputs = [X, Y, Z]
def max_op(X, Y, Z):
return [np.maximum(np.maximum(X, Y), Z)]
op = core.CreateOperator(
"Max",
["X", "Y", "Z"],
["mx"]
)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=inputs,
reference=max_op,
)
self.assertDeviceChecks(dc, op, inputs, [0])
@given(n=st.integers(4, 5), m=st.integers(6, 7),
d=st.integers(2, 3), **hu.gcs)
@settings(deadline=10000)
def test_elementwise_max_grad(self, n, m, d, gc, dc):
go = np.random.rand(n, m, d).astype(np.float32)
X = np.random.rand(n, m, d).astype(np.float32)
Y = np.random.rand(n, m, d).astype(np.float32)
Z = np.random.rand(n, m, d).astype(np.float32)
mx = np.maximum(np.maximum(X, Y), Z)
inputs = [mx, go, X, Y, Z]
def max_grad_op(mx, go, X, Y, Z):
def mx_grad(a):
return go * (mx == a)
return [mx_grad(a) for a in [X, Y, Z]]
op = core.CreateOperator(
"MaxGradient",
["mx", "go", "X", "Y", "Z"],
["gX", "gY", "gZ"]
)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=inputs,
reference=max_grad_op,
)
self.assertDeviceChecks(dc, op, inputs, [0, 1, 2])
@serial.given(n=st.integers(4, 5), m=st.integers(6, 7),
d=st.integers(2, 3), **hu.gcs)
def test_elementwise_min(self, n, m, d, gc, dc):
X = np.random.rand(n, m, d).astype(np.float32)
Y = np.random.rand(n, m, d).astype(np.float32)
Z = np.random.rand(n, m, d).astype(np.float32)
inputs = [X, Y, Z]
def min_op(X, Y, Z):
return [np.minimum(np.minimum(X, Y), Z)]
op = core.CreateOperator(
"Min",
["X", "Y", "Z"],
["mx"]
)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=inputs,
reference=min_op,
)
self.assertDeviceChecks(dc, op, inputs, [0])
@given(n=st.integers(4, 5), m=st.integers(6, 7),
d=st.integers(2, 3), **hu.gcs)
@settings(deadline=10000)
def test_elementwise_min_grad(self, n, m, d, gc, dc):
go = np.random.rand(n, m, d).astype(np.float32)
X = np.random.rand(n, m, d).astype(np.float32)
Y = np.random.rand(n, m, d).astype(np.float32)
Z = np.random.rand(n, m, d).astype(np.float32)
mx = np.minimum(np.minimum(X, Y), Z)
inputs = [mx, go, X, Y, Z]
def min_grad_op(mx, go, X, Y, Z):
def mx_grad(a):
return go * (mx == a)
return [mx_grad(a) for a in [X, Y, Z]]
op = core.CreateOperator(
"MinGradient",
["mx", "go", "X", "Y", "Z"],
["gX", "gY", "gZ"]
)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=inputs,
reference=min_grad_op,
)
self.assertDeviceChecks(dc, op, inputs, [0, 1, 2])
@given(
n=st.integers(1, 8), m=st.integers(1, 10), d=st.integers(1, 4),
in_place=st.booleans(), engine=st.sampled_from(["", "CUDNN"]),
seed=st.integers(min_value=0, max_value=65535),
dtype=st.sampled_from([np.int32, np.int64, np.float32]),
**hu.gcs)
@settings(deadline=10000)
def test_sum(
self, n, m, d, in_place, engine, seed, dtype, gc, dc):
input_names = []
input_vars = []
np.random.seed(seed)
for i in range(m):
X_name = 'X' + str(i)
input_names.extend([X_name])
var = np.random.rand(n, d).astype(dtype)
vars()[X_name] = var
input_vars.append(var)
def sum_op_ref(*args):
res = np.zeros((n, d))
for i in range(m):
res = res + args[i]
return (res, )
op = core.CreateOperator(
"Sum",
input_names,
[input_names[0]] if in_place else ['Y'],
engine=engine,
)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=input_vars,
reference=sum_op_ref,
)
self.assertDeviceChecks(dc, op, input_vars, [0])
@given(
inputs=hu.lengths_tensor().flatmap(
lambda pair: st.tuples(
st.just(pair[0]),
st.just(pair[1]),
hu.dims(max_value=len(pair[1])),
)
).flatmap(
lambda tup: st.tuples(
st.just(tup[0]),
st.just(tup[1]),
hu.arrays(
tup[2], dtype=np.int32,
elements=st.integers(
min_value=0, max_value=len(tup[1]) - 1)),
)
),
**hu.gcs_cpu_only)
@settings(deadline=1000)
def test_lengths_gather(self, inputs, gc, dc):
items = inputs[0]
lengths = inputs[1]
indices = inputs[2]
def lengths_gather_op(items, lengths, indices):
ends = np.cumsum(lengths)
return [np.concatenate(
list(items[ends[i] - lengths[i]:ends[i]] for i in indices))]
Loading ...