from multiprocessing import Process, Manager
import numpy as np
import unittest
import tempfile
import shutil
import logging
from hypothesis import given, settings
import hypothesis.strategies as st
from caffe2.python import workspace
log = logging.getLogger("parallelize_bmuf_distributed_test")
log.setLevel(logging.INFO)
def bmuf_process(filestore_dir, process_id, shared_results,
cpu_device=False, nesterov=False):
# We need to import caffe2 in every process to initialize CUDA independently.
from caffe2.python import core, cnn, data_parallel_model, dyndep
from caffe2.proto import caffe2_pb2
dyndep.InitOpsLibrary("@/caffe2/caffe2/distributed:file_store_handler_ops")
if not cpu_device:
if not workspace.has_gpu_support:
log.info('No GPU support test is Ignored.')
return
if workspace.NumGpuDevices() < 4:
log.info('Not enough GPU support, test IGNORED')
return
model = cnn.CNNModelHelper(
order="NHWC",
name="test"
)
if not cpu_device:
device_type = workspace.GpuDeviceType
device_prefix = "gpu"
else:
device_type = caffe2_pb2.CPU
device_prefix = "cpu"
devices = [0, 1] if process_id == 0 else [2, 3]
def _model_build_fun(model, loss_scale):
fc = model.FC(
"data", "fc", 16, 1, ("ConstantFill", {}), ("ConstantFill", {})
)
fc_fl = model.FlattenToVec(fc, "fc_fl")
sigm = model.Sigmoid(fc_fl, "sigm")
sq = model.SquaredL2Distance([sigm, "label"], "sq")
loss = model.AveragedLoss(sq, "loss")
loss = model.Scale(loss, scale=loss_scale)
# For testing explicit sync
model.param_init_net.UniformFill([], ["sync_num"], shape=[1])
return [loss]
def _input_builder_fun(model):
return None
def _param_update_fun(model):
ITER = model.Iter("ITER")
LR = model.net.LearningRate(
[ITER],
"LR",
base_lr=(-0.1),
policy="fixed",
)
ONE = model.param_init_net.ConstantFill(
[], "ONE", shape=[1], value=1.0,
)
for param in model.GetParams():
grad = model.param_to_grad[param]
model.WeightedSum([param, ONE, grad, LR], param)
def _generate_data(devices, process_id, device_type, device_prefix):
np.random.seed(26 + process_id * 10)
# Each run has same input, independent of number of gpus
batch_size = 64
for _ in range(0, 10):
full_data = np.random.rand(batch_size, 16)
full_labels = np.round(full_data[:, 0])
batch_per_device = batch_size // len(devices)
for (j, g) in enumerate(devices):
st = j * batch_per_device
en = st + batch_per_device
data = full_data[st:en, :].astype(np.float32)
labels = full_labels[st:en].astype(np.float32)
with core.DeviceScope(core.DeviceOption(device_type, g)):
workspace.FeedBlob("{}_{}/data".format(device_prefix, g), data)
workspace.FeedBlob("{}_{}/label".format(device_prefix, g), labels)
_generate_data(devices, process_id, device_type, device_prefix)
workspace.RunOperatorOnce(
core.CreateOperator(
"FileStoreHandlerCreate", [], ["store_handler"],
path=filestore_dir
)
)
rendezvous = dict(
kv_handler="store_handler",
shard_id=process_id,
num_shards=2,
engine="GLOO",
exit_nets=None
)
data_parallel_model.Parallelize_BMUF(
model,
_input_builder_fun,
_model_build_fun,
_param_update_fun,
devices=devices,
rendezvous=rendezvous,
nesterov=nesterov,
add_blobs_to_sync=["sync_num"],
cpu_device=cpu_device
)
data_parallel_model.RunInitNet(model)
def _device_pid(device, pid):
if pid == 1:
return device + 2
return device
np.testing.assert_equal(
workspace.FetchBlob("{}_{}/fc_w_v".format(
device_prefix, _device_pid(0, process_id))),
np.zeros(16).astype(np.float32).reshape(1, 16)
)
# Run the algorithm for one iteration to have non-zero params.
data_parallel_model.RunNet(model, 1)
# Save iteration momentum and post local update params
results = {}
v_b_ = workspace.FetchBlob(
"{}_{}/fc_b_v".format(device_prefix, _device_pid(0, process_id)))
v_w_ = workspace.FetchBlob(
"{}_{}/fc_w_v".format(device_prefix, _device_pid(0, process_id)))
results['v_b_'] = v_b_
results['v_w_'] = v_w_
workspace.RunNetOnce(model.net)
b_0_ = workspace.FetchBlob(
"{}_{}/fc_b".format(device_prefix, _device_pid(0, process_id)))
w_0_ = workspace.FetchBlob(
"{}_{}/fc_w".format(device_prefix, _device_pid(0, process_id)))
b_1_ = workspace.FetchBlob(
"{}_{}/fc_b".format(device_prefix, _device_pid(1, process_id)))
w_1_ = workspace.FetchBlob(
"{}_{}/fc_w".format(device_prefix, _device_pid(1, process_id)))
results['b_0_'] = b_0_
results['w_0_'] = w_0_
results['b_1_'] = b_1_
results['w_1_'] = w_1_
# Test sync
if process_id == 0:
workspace.FeedBlob(
device_prefix + "_0/sync_num",
np.array([2603]).astype(np.float32),
device_option=core.DeviceOption(device_type, 0))
# Compute block gradients.
b_g_ = workspace.FetchBlob(
"{}_{}/fc_b_g".format(device_prefix, _device_pid(0, process_id)))
w_g_ = workspace.FetchBlob(
"{}_{}/fc_w_g".format(device_prefix, _device_pid(0, process_id)))
results['b_g_'] = b_g_
results['w_g_'] = w_g_
workspace.RunNetOnce(model._global_model_param_updates_net)
# g_b = (b_0_ + b_1_) / 2 - b_g_
# g_w = (w_0_ + w_1_) / 2 - w_g_
v_b = workspace.FetchBlob(
"{}_{}/fc_b_v".format(device_prefix, _device_pid(0, process_id)))
v_w = workspace.FetchBlob(
"{}_{}/fc_w_v".format(device_prefix, _device_pid(0, process_id)))
w_g = workspace.FetchBlob(
"{}_{}/fc_w_g".format(device_prefix, _device_pid(0, process_id)))
b_g = workspace.FetchBlob(
"{}_{}/fc_b_g".format(device_prefix, _device_pid(0, process_id)))
w_0 = workspace.FetchBlob(
"{}_{}/fc_w".format(device_prefix, _device_pid(0, process_id)))
b_0 = workspace.FetchBlob(
"{}_{}/fc_b".format(device_prefix, _device_pid(0, process_id)))
w_1 = workspace.FetchBlob(
"{}_{}/fc_w".format(device_prefix, _device_pid(1, process_id)))
b_1 = workspace.FetchBlob(
"{}_{}/fc_b".format(device_prefix, _device_pid(1, process_id)))
results['v_b'] = v_b
results['v_w'] = v_w
results['w_g'] = w_g
results['b_g'] = b_g
results['w_0'] = w_0
results['b_0'] = b_0
results['w_1'] = w_1
results['b_1'] = b_1
# Test add_blobs_to_sync
for j in devices:
sync = workspace.FetchBlob(
device_prefix + "_{}/sync_num".format(j))[0]
results['sync_{}'.format(j)] = sync
shared_results[process_id] = results
class DistributedTest(unittest.TestCase):
@given(
cpu_device=st.booleans(),
nesterov=st.booleans()
)
@settings(deadline=10000)
def test_bmuf_distributed(self, cpu_device, nesterov):
if (not cpu_device) and workspace.has_hip_support:
log.info('Skipping the test on ROCm due to regression in ROCm3.5')
return
self._test_bmuf_distributed(cpu_device=cpu_device, nesterov=nesterov)
def _test_bmuf_distributed(self, cpu_device=False, nesterov=False):
processes = []
filestore_dir = tempfile.mkdtemp()
results = Manager().dict()
for idx in range(0, 2):
process = Process(
target=bmuf_process,
args=(filestore_dir, idx, results, cpu_device, nesterov)
)
processes.append(process)
process.start()
while len(processes) > 0:
process = processes.pop()
process.join()
shutil.rmtree(filestore_dir)
if len(results) == 0:
return
w_0 = results[0]['w_0']
w_1 = results[0]['w_1']
b_0 = results[0]['b_0']
b_1 = results[0]['b_1']
# Check parameters are in sync.
np.testing.assert_equal(w_0, w_1)
np.testing.assert_equal(w_0, results[1]['w_0'])
np.testing.assert_equal(w_0, results[1]['w_1'])
np.testing.assert_equal(b_0, b_1)
np.testing.assert_equal(b_0, results[1]['b_0'])
np.testing.assert_equal(b_0, results[1]['b_1'])
w_g_ = results[0]['w_g_']
b_g_ = results[0]['b_g_']
g_b = (results[0]['b_0_'] + results[1]['b_0_'] + results[0]['b_1_'] +
results[1]['b_1_']) / 4 - b_g_
g_w = (results[0]['w_0_'] + results[1]['w_0_'] + results[0]['w_1_'] +
results[1]['w_1_']) / 4 - w_g_
v_b_ = results[0]['v_b_']
v_b = results[0]['v_b']
v_w_ = results[0]['v_w_']
v_w = results[0]['v_w']
for pid in results.keys():
for k in results[pid].keys():
if k.startswith("sync_num"):
self.assertEqual(2603, results[pid][k])
# Check block gradients are correct.
np.testing.assert_almost_equal(v_b, 0.75 * v_b_ + g_b)
np.testing.assert_almost_equal(v_w, 0.75 * v_w_ + g_w)
# Check params update step
if nesterov:
np.testing.assert_equal(w_0, w_g_ + v_w - 0.75 * (v_w - v_w_))
np.testing.assert_equal(b_0, b_g_ + v_b - 0.75 * (v_b - v_b_))
else:
np.testing.assert_equal(w_0, w_g_ + v_w)
np.testing.assert_equal(b_0, b_g_ + v_b)