Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

neilisaac / torch   python

Repository URL to install this package:

Version: 1.8.0 

/ python / parallelize_bmuf_distributed_test.py





from multiprocessing import Process, Manager

import numpy as np
import unittest
import tempfile
import shutil
import logging

from hypothesis import given, settings
import hypothesis.strategies as st

from caffe2.python import workspace

log = logging.getLogger("parallelize_bmuf_distributed_test")
log.setLevel(logging.INFO)


def bmuf_process(filestore_dir, process_id, shared_results,
                 cpu_device=False, nesterov=False):
    # We need to import caffe2 in every process to initialize CUDA independently.
    from caffe2.python import core, cnn, data_parallel_model, dyndep
    from caffe2.proto import caffe2_pb2
    dyndep.InitOpsLibrary("@/caffe2/caffe2/distributed:file_store_handler_ops")

    if not cpu_device:
        if not workspace.has_gpu_support:
            log.info('No GPU support test is Ignored.')
            return
        if workspace.NumGpuDevices() < 4:
            log.info('Not enough GPU support, test IGNORED')
            return

    model = cnn.CNNModelHelper(
        order="NHWC",
        name="test"
    )
    if not cpu_device:
        device_type = workspace.GpuDeviceType
        device_prefix = "gpu"
    else:
        device_type = caffe2_pb2.CPU
        device_prefix = "cpu"

    devices = [0, 1] if process_id == 0 else [2, 3]

    def _model_build_fun(model, loss_scale):
        fc = model.FC(
            "data", "fc", 16, 1, ("ConstantFill", {}), ("ConstantFill", {})
        )
        fc_fl = model.FlattenToVec(fc, "fc_fl")
        sigm = model.Sigmoid(fc_fl, "sigm")
        sq = model.SquaredL2Distance([sigm, "label"], "sq")
        loss = model.AveragedLoss(sq, "loss")
        loss = model.Scale(loss, scale=loss_scale)

        # For testing explicit sync
        model.param_init_net.UniformFill([], ["sync_num"], shape=[1])
        return [loss]

    def _input_builder_fun(model):
        return None

    def _param_update_fun(model):
        ITER = model.Iter("ITER")
        LR = model.net.LearningRate(
            [ITER],
            "LR",
            base_lr=(-0.1),
            policy="fixed",
        )
        ONE = model.param_init_net.ConstantFill(
            [], "ONE", shape=[1], value=1.0,
        )
        for param in model.GetParams():
            grad = model.param_to_grad[param]
            model.WeightedSum([param, ONE, grad, LR], param)

    def _generate_data(devices, process_id, device_type, device_prefix):
        np.random.seed(26 + process_id * 10)
        # Each run has same input, independent of number of gpus
        batch_size = 64
        for _ in range(0, 10):
            full_data = np.random.rand(batch_size, 16)
            full_labels = np.round(full_data[:, 0])
            batch_per_device = batch_size // len(devices)

            for (j, g) in enumerate(devices):
                st = j * batch_per_device
                en = st + batch_per_device
                data = full_data[st:en, :].astype(np.float32)
                labels = full_labels[st:en].astype(np.float32)
                with core.DeviceScope(core.DeviceOption(device_type, g)):
                    workspace.FeedBlob("{}_{}/data".format(device_prefix, g), data)
                    workspace.FeedBlob("{}_{}/label".format(device_prefix, g), labels)

    _generate_data(devices, process_id, device_type, device_prefix)

    workspace.RunOperatorOnce(
        core.CreateOperator(
            "FileStoreHandlerCreate", [], ["store_handler"],
            path=filestore_dir
        )
    )
    rendezvous = dict(
        kv_handler="store_handler",
        shard_id=process_id,
        num_shards=2,
        engine="GLOO",
        exit_nets=None
    )

    data_parallel_model.Parallelize_BMUF(
        model,
        _input_builder_fun,
        _model_build_fun,
        _param_update_fun,
        devices=devices,
        rendezvous=rendezvous,
        nesterov=nesterov,
        add_blobs_to_sync=["sync_num"],
        cpu_device=cpu_device
    )

    data_parallel_model.RunInitNet(model)

    def _device_pid(device, pid):
        if pid == 1:
            return device + 2
        return device

    np.testing.assert_equal(
        workspace.FetchBlob("{}_{}/fc_w_v".format(
            device_prefix, _device_pid(0, process_id))),
        np.zeros(16).astype(np.float32).reshape(1, 16)
    )

    # Run the algorithm for one iteration to have non-zero params.
    data_parallel_model.RunNet(model, 1)

    # Save iteration momentum and post local update params
    results = {}
    v_b_ = workspace.FetchBlob(
        "{}_{}/fc_b_v".format(device_prefix, _device_pid(0, process_id)))
    v_w_ = workspace.FetchBlob(
        "{}_{}/fc_w_v".format(device_prefix, _device_pid(0, process_id)))

    results['v_b_'] = v_b_
    results['v_w_'] = v_w_

    workspace.RunNetOnce(model.net)

    b_0_ = workspace.FetchBlob(
        "{}_{}/fc_b".format(device_prefix, _device_pid(0, process_id)))
    w_0_ = workspace.FetchBlob(
        "{}_{}/fc_w".format(device_prefix, _device_pid(0, process_id)))
    b_1_ = workspace.FetchBlob(
        "{}_{}/fc_b".format(device_prefix, _device_pid(1, process_id)))
    w_1_ = workspace.FetchBlob(
        "{}_{}/fc_w".format(device_prefix, _device_pid(1, process_id)))

    results['b_0_'] = b_0_
    results['w_0_'] = w_0_
    results['b_1_'] = b_1_
    results['w_1_'] = w_1_

    # Test sync
    if process_id == 0:
        workspace.FeedBlob(
            device_prefix + "_0/sync_num",
            np.array([2603]).astype(np.float32),
            device_option=core.DeviceOption(device_type, 0))

    # Compute block gradients.
    b_g_ = workspace.FetchBlob(
        "{}_{}/fc_b_g".format(device_prefix, _device_pid(0, process_id)))
    w_g_ = workspace.FetchBlob(
        "{}_{}/fc_w_g".format(device_prefix, _device_pid(0, process_id)))
    results['b_g_'] = b_g_
    results['w_g_'] = w_g_
    workspace.RunNetOnce(model._global_model_param_updates_net)

    #  g_b = (b_0_ + b_1_) / 2 - b_g_
    #  g_w = (w_0_ + w_1_) / 2 - w_g_
    v_b = workspace.FetchBlob(
        "{}_{}/fc_b_v".format(device_prefix, _device_pid(0, process_id)))
    v_w = workspace.FetchBlob(
        "{}_{}/fc_w_v".format(device_prefix, _device_pid(0, process_id)))
    w_g = workspace.FetchBlob(
        "{}_{}/fc_w_g".format(device_prefix, _device_pid(0, process_id)))
    b_g = workspace.FetchBlob(
        "{}_{}/fc_b_g".format(device_prefix, _device_pid(0, process_id)))
    w_0 = workspace.FetchBlob(
        "{}_{}/fc_w".format(device_prefix, _device_pid(0, process_id)))
    b_0 = workspace.FetchBlob(
        "{}_{}/fc_b".format(device_prefix, _device_pid(0, process_id)))
    w_1 = workspace.FetchBlob(
        "{}_{}/fc_w".format(device_prefix, _device_pid(1, process_id)))
    b_1 = workspace.FetchBlob(
        "{}_{}/fc_b".format(device_prefix, _device_pid(1, process_id)))
    results['v_b'] = v_b
    results['v_w'] = v_w
    results['w_g'] = w_g
    results['b_g'] = b_g
    results['w_0'] = w_0
    results['b_0'] = b_0
    results['w_1'] = w_1
    results['b_1'] = b_1

    # Test add_blobs_to_sync
    for j in devices:
        sync = workspace.FetchBlob(
            device_prefix + "_{}/sync_num".format(j))[0]
        results['sync_{}'.format(j)] = sync

    shared_results[process_id] = results


class DistributedTest(unittest.TestCase):

    @given(
        cpu_device=st.booleans(),
        nesterov=st.booleans()
    )
    @settings(deadline=10000)
    def test_bmuf_distributed(self, cpu_device, nesterov):
        if (not cpu_device) and workspace.has_hip_support:
            log.info('Skipping the test on ROCm due to regression in ROCm3.5')
            return
        self._test_bmuf_distributed(cpu_device=cpu_device, nesterov=nesterov)

    def _test_bmuf_distributed(self, cpu_device=False, nesterov=False):
        processes = []
        filestore_dir = tempfile.mkdtemp()
        results = Manager().dict()
        for idx in range(0, 2):
            process = Process(
                target=bmuf_process,
                args=(filestore_dir, idx, results, cpu_device, nesterov)
            )
            processes.append(process)
            process.start()

        while len(processes) > 0:
            process = processes.pop()
            process.join()
        shutil.rmtree(filestore_dir)

        if len(results) == 0:
            return

        w_0 = results[0]['w_0']
        w_1 = results[0]['w_1']
        b_0 = results[0]['b_0']
        b_1 = results[0]['b_1']
        # Check parameters are in sync.
        np.testing.assert_equal(w_0, w_1)
        np.testing.assert_equal(w_0, results[1]['w_0'])
        np.testing.assert_equal(w_0, results[1]['w_1'])
        np.testing.assert_equal(b_0, b_1)
        np.testing.assert_equal(b_0, results[1]['b_0'])
        np.testing.assert_equal(b_0, results[1]['b_1'])

        w_g_ = results[0]['w_g_']
        b_g_ = results[0]['b_g_']

        g_b = (results[0]['b_0_'] + results[1]['b_0_'] + results[0]['b_1_'] +
               results[1]['b_1_']) / 4 - b_g_
        g_w = (results[0]['w_0_'] + results[1]['w_0_'] + results[0]['w_1_'] +
               results[1]['w_1_']) / 4 - w_g_
        v_b_ = results[0]['v_b_']
        v_b = results[0]['v_b']
        v_w_ = results[0]['v_w_']
        v_w = results[0]['v_w']

        for pid in results.keys():
            for k in results[pid].keys():
                if k.startswith("sync_num"):
                    self.assertEqual(2603, results[pid][k])

        # Check block gradients are correct.
        np.testing.assert_almost_equal(v_b, 0.75 * v_b_ + g_b)
        np.testing.assert_almost_equal(v_w, 0.75 * v_w_ + g_w)

        # Check params update step
        if nesterov:
            np.testing.assert_equal(w_0, w_g_ + v_w - 0.75 * (v_w - v_w_))
            np.testing.assert_equal(b_0, b_g_ + v_b - 0.75 * (v_b - v_b_))
        else:
            np.testing.assert_equal(w_0, w_g_ + v_w)
            np.testing.assert_equal(b_0, b_g_ + v_b)